КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Проверка значимости коэффициентов
Проверка адекватности модели Регрессионный анализ Регрессионный анализ как всякий статистический метод, применим при определенных предположениях, постулатах. Первый постулат. Параметр оптимизации y есть случайная величина с нормальным законом распределения. Дисперсия воспроизводимости – одна из характеристик этого закона распределения. Второй постулат. Дисперсия y не зависит от абсолютной величины y. Третий постулат. Значения факторов суть неслучайные величины
Проверить адекватность модели – значит установить, насколько хорошо модель описывает реальные процессы, происходящие в системе, насколько качественно она будет прогнозировать развитие данных процессов. Проверка адекватности проводится на основании некоторой экспериментальной информации, полученной на этапе функционирования системы или при проведении специального эксперимента, в ходе которого наблюдаются интересующие процессы.
Проверка значимости каждого коэффициента проводится независимо. Ее можно осуществлять двумя равноценными способами: проверкой по t -критерию Стьюдента или построением доверительного интервала. При использовании полного факторного эксперимента или регулярных дробных реплик доверительные интервалы для всех коэффициентов (в том числе и эффектов взаимодействия) равны друг другу. Прежде всего, надо найти дисперсию коэффициента регрессии . Она определяется в нашем по формуле Из формулы видно, что дисперсии всех коэффициентов равны друг другу, так как они зависят только от ошибки опыта и числа опытов. Теперь легко построить доверительный интервал Здесь t – табличное значение критерия Стьюдента при числе степеней свободы, с которыми определялась , и выбранном уровне значимости (обычно 0,05); – квадратичная ошибка коэффициента регрессии. Коэффициент значим, если его абсолютная величина больше доверительного интервала.
Дата добавления: 2015-05-10; Просмотров: 586; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |