Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы проверки выборки на нормальность




Параметрические критерии

Лекция 4-5 Анализ двух выборок

План

1. Параметрические критерии

2. Непараметрические критерии

Важнейшим вопросом, возникающем при анализе двух выборок, является вопрос о наличии различий между выборками. Обычно для этого проводят проверку статистических гипотез о принадлежности обеих выборок одной генеральной совокупности или о равенстве средних.

Если вид распределения или функция распределения выборки нам заданы, то в этом случае задача оценки различий двух групп независимых наблюдений может решаться с использованием параметрических критериев статистики: либо кри­терия Стьюдента (t), если сравнение выборок ведется по сред­ним значениям (X и У), либо с использованием критерия Фишера (F), если сравнение выборок ведется по их дисперсиям.

Использование параметрических критериев статистики без предварительной про­верки вида распределения может привести к определенным ошибкам в ходе проверки рабочей гипотезы.

Для преодоления указанных трудностей в практике педагоги­ческих исследований следует использовать непараметрические критерии статистики, такие, как критерий знаков, двухвыборочный критерий Вилкоксона, критерий Ван дер Вардена, критерий Спирмена, выбор которых, хотя и не требует большого числа членов выборки и знаний, вида распределения, но все же зависит от целого ряда условий.

Непараметрические критерии статистики - свободны от допущения о законе распределения выборок и базируются на предположении о независимости наблюдений.

В группу параметрических критериев методов математической статистикивходят методы для вычисления описательных статистик, построения графиков на нормальность распределения, проверка гипотез о при­надлежности двух выборок одной совокупности. Эти методы основыва­ются на предположении о том, что распределение выборок подчиняется нормальному (гауссовому) закону распределения. Среди параметрических критериев статистики нами будут рассмотрены критерий Стьюдента и Фишера.

Чтобы определить, имеем ли мы дело с нормальным распределением, можно применять следующие методы:

1) в пределах осей можно нарисовать полигон частоты (эмпирическую функцию распределения) и кривую нормального распределения на основе данных исследования. Исследуя формы кривой нормального распределения и графика эмпирической функции распределения, можно выяснить те параметры, которыми последняя кривая отличается от первой;

2) вычисляется среднее, медиана и мода и на основе этого определяется отклонение от нормального распределения. Если мода, медиана и среднее арифметическое друг от друга значительно не отличаются, мы имеем дело с нормальным распределением. Если медиана значительно отличается от среднего, то мы имеем дело с асимметричной выборкой.

3) эксцесс кривой распределения должен быть равен 0. Кривые с положительным эксцессом значительно вертикальнее кривой нормального распределения. Кривые с отрицательным эксцессом являются более покатистыми по сравнению с кривой нормального распределения;

4) после определения среднего значения распределения частоты и стандартного oтклонения находят следующие четыре интервала распределения сравнивают их с действительными данными ряда:

а) — к интервалу должно относиться около 25% частоты совокупности,

б) — к интервалу должно относиться около 50% частоты совокупности,

в) — к интервалу должно относиться около 75% частоты совокупности,

г) — к интервалу должно относиться около 100% частоты совокупности.

Критерий Стьюдента (t-критерий)

Критерий позволяет найти вероятность того, что оба средних значения в выборке относятся к одной и той же совокупности. Данный критерий наиболее часто используется для проверки гипотезы: «Средние двух выборок относятся к одной и той же совокупности».

При использовании критерия можно выделить два случая. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух неза­висимых, несвязанных выборок (так называемый двухвыборочный t-критерий). В этом случае есть контрольная группа и экспериментальная (опытная) группа, количество испытуемых в группах может быть различно.

Во втором случае, когда одна и та же группа объектов порождает числовой матери­ал для проверки гипотез о средних, используется так называемый парный t-критерий. Выборки при этом называют зависимыми, связанными.

а) случай независимых выборок

Статистика критерия для случая несвязанных, независимых выборок равна:

(1)

где , — средние арифметические в эксперименталь­ной и контрольной группах,

- стан­дартная ошибка разности средних арифметических. Находится из формулы:

, (2)

где n1 и n2 соответственно величины первой и второй выборки.

Если n1=n2, то стандартная ошибка разности средних арифметических будет считаться по формуле:

(3)

где n величина выборки.

Подсчет числа степеней свободы осуществля­ется по формуле:

k = n1 + n2 – 2. (4)

При численном равенстве выборок k = 2n - 2.

Далее необходимо срав­нить полученное значение tэмп с теоретическим значением t—рас­пределения Стьюдента (см. приложение к учеб­никам статистики). Если tэмп<tкрит, то гипотезаH0 принимается, в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза.

Рассмотрим пример использования t-критерия Стьюдента для несвязных и неравных по численности выборок.

Пример 1. В двух группах учащихся — экспериментальной и контрольной — получены следующие результаты по учеб­ному предмету (тестовые баллы; см. табл. 1).[1]

Таблица 1. Результаты эксперимента

Первая группа (экспериментальная) N1=11 человек Вторая группа (контрольная) N2=9 человек
12 14 13 16 11 9 13 15 15 18 14 13 9 11 10 7 6 8 10 11

Общее количество членов выборки: n1=11, n2=9.

Расчет средних арифметических: Хср=13,636; Yср=9,444

Стандартное отклонение: sx=2,460; sy=2,186

По формуле (2) рассчитываем стандартную ошибку разности арифметических средних:

Считаем статистику критерия:

Сравниваем полученное в эксперименте значение t с табличным значением с учетом степеней свободы, равных по формуле (4) числу испытуемых минус два (18).

Табличное значение tкрит равняется 2,1 при допущении возможности риска сделать ошибочное сужде­ние в пяти случаях из ста (уровень значимости=5 % или 0,05).

Если полученное в эксперименте эмпирическое значение t превы­шает табличное, то есть основания принять альтернативную гипотезу (H1) о том, что учащиеся экспериментальной группы показывают в среднем более высокий уровень знаний. В эксперименте t=3,981, табличное t=2,10, 3,981>2,10, откуда следует вывод о преимуществе эксперимен­тального обучения.

Здесь могут возникнуть такие вопросы:

1. Что если полученное в опыте значение t окажется меньше табличного? Тогда надо принять нулевую гипотезу.

2. Доказано ли преимущество экспериментального метода? Не столько доказано, сколько показано, потому что с самого начала допускается риск ошибиться в пяти случаях из ста (р=0,05). Наш эксперимент мог быть одним из этих пяти случаев. Но 95% возможных случаев говорит в пользу альтернативной гипотезы, а это достаточно убедительный аргумент в статистическом доказательстве.

3. Что если в контрольной группе результаты окажутся выше, чем в экспериментальной? Поменяем, например, местами, сделав средней арифметической эксперимен­тальной группы, a — контрольной:

Отсюда следует вывод, что новый метод пока не про­явил себя с хорошей стороны по разным, возможно, при­чинам. Поскольку абсолютное значение 3,9811>2,1, принимается вторая альтернативная гипотеза (Н2) о пре­имуществе традиционного метода.

б) случай связанных (парных) выборок

В случае связанных выборок с равным числом измерений в каждой можно использовать более простую формулу t-критерия Стьюдента.

Вычисление значения t осуществляется по формуле:

(5)

где — разности между соответствующими значениями переменной X и переменной У, а d - среднее этих разностей;

Sd вычисляется по следующей формуле:

(6)

Число степеней свободы k определяется по формуле k=n-1. Рассмотрим пример использования t-критерия Стьюдента для связных и, очевидно, равных по численности выборок.

Если tэмп<tкрит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.

Пример 2. Изучался уровень ориентации учащихся на художественно-эстети­ческие ценности. С целью активизации формирования этой ориентации в экспериментальной группе проводились бе­седы, выставки детских рисунков, были организованы по­сещения музеев и картинных галерей, проведены встречи с музыкантами, художниками и др. Закономерно встает вопрос: какова эффективность проведенной работы? С целью проверки эффективности этой работы до начала эксперимента и после давался тест. Из методических со­ображений в таблице 2 приводятся результаты небольшо­го числа испытуемых.

Таблица 2. Результаты эксперимента

Ученики (n=10) Баллы Вспомогательные расчеты
до начала экспери­мента (Х) в конце экспери­мента (У) d d2
Иванов        
Новиков     -1  
Сидоров        
Пирогов        
Агапов        
Суворов        
Рыжиков        
Серов        
Топоров        
Быстров        
Å        
Среднее 14,8 21,1    

Вначале произведем расчет по формуле:

Затем применим формулу (6), получим:

И, наконец, следует применить формулу (5). Получим:

Число степеней свободы: k=10-1=9 и по таблице При­ложения 1 находим tкрит =2.262, экспериментальное t=6,678, откуда следует возможность принятия альтерна­тивной гипотезы (H1) о достоверных различиях средних арифметических, т. е. делается вывод об эффективности экспериментального воздействия.

В терминах статистических гипотез полученный результат будет звучать так: на 5% уров­не гипотеза Н0 отклоняется и принимается гипотеза Н1.




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 5363; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.