КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Регулярний тепловий режим
Раніше було показано, що зміна температури тіла простої геометричної форми описується єдиним рівнянням (4.44) , де числа утворюють дискретну зростаючу послідовність Французький дослідник Буссинеськ (1900 р.) довів, що при охолодженні будь-якого однорідного тіла як завгодно складної форми поле температур описується тим самим рівнянням. Форма рівняння вказує, що для будь-яких умов задачі завжди можна вказати такий момент часу , починаючи з якого з достатнім ступенем точності розв’язок співпадатиме з першим членом, тобто при . (4.50) Таким чином, момент часу розділяє дві стадії протікання процесу нагріву (охолоджування): 1) – теплові збурення лише частково проникають в тіло, є і незбурені області. Природно, що при цьому важливу роль виконує початковий розподіл температур. Ця стадія процесу носить назву неврегульованої або нерегулярної; 2) – регулярний тепловий режим. На цій стадії початкові умови виконують другорядну роль, теплові збурення охоплюють весь об'єм тіла. З (4.50) слідує рівняння , (4.51) що є в напівлогарифмічних координатах рівняння прямої лінії (рис. 4.12). Величина (4.52) одержала назву темпу охолодження. Вона є відносною швидкістю зміни температури, оскільки з (4.51) слідує, . При встановленні регулярного режиму темп охолодження не залежить ні від координати, ні від часу, а визначається геометрією тіла, його фізичними властивостями і умовами теплообміну на поверхні. Теорія регулярного режиму була розвинена Г.М.Кондратьевим. Її найважливіші положення зводяться до наступного: 1.
Теорема Буссинеська справедлива також для складових і неоднорідних тіл. 2. Для однорідних тіл, коли коефіцієнт тепловіддачі – кінцева величина, темп охолодження визначається наступним співвідношенням: , (4.53) де – коефіцієнт нерівномірності температурного поля, що є відношенням середнього по поверхні натиску до середнього за об'ємом. Рівняння (4.53) виражає 1-у теорему Кондратьева, яка свідчить, що темп охолодження однорідного і ізотропного тіла в регулярному режимі при кінцевій величині a пропорційний коефіцієнту тепловіддачі і обернено пропорційний повній теплоємності тіла. Рівняння (4.53) є нічим іншим, як співвідношення балансу тепла для стадії регулярного режиму. Насправді, для деякого тіла об'ємом V і з площею поверхні F . (4.54) Для стадії регулярного режиму , крім того, по теоремі про середнє (4.55) Підставляючи (4.55) в (4.54), одержимо вираз (4.53), який і потрібно було довести. Величина коефіцієнта ψ залежить від числа , де – узагальнений характерний лінійний розмір. Очевидно, при (рис. 4.9) температура однакова в усіх точках охолоджуваного тіла, тобто і, отже, . При (рис. 4.10) надлишкова температура поверхні рівна нулю і . Цікаво, що вид функції практично не залежить від геометрії охолоджуваного тіла і може бути описаний рівнянням, запропонованим Н. А. Яришевим: . (4.56) 3. При темп охолоджування залишається кінцевою величиною і прагне до значення , (4.57) де К, м2 – коефіцієнт форми – параметр, що визначається геометрією тіла; а – коефіцієнт температуропровідності. Рівняння (4.57) носить назву 2-й теореми Кондратьева і є окремим випадком більш загального співвідношення (4.53). Для доведення запишемо умову теплообміну на границі тіла і підставимо його в (4.53), звідки отримаємо . (4.58) Порівнюючи (4.57) і (4.58), можна записати . Очевидно, на стадії регулярного режиму цей коефіцієнт залежить тільки від геометрії системи. Якщо відомий аналітичний вираз для і (а вони легко можуть бути розраховані при ), то можна знайти відповідний коефіцієнт форми. Для тіл простої геометричної форми коефіцієнт К може бути знайдений з достатньо простих міркувань. Згідно визначенню, , де μ1 – перший розв’язок характеристичного рівняння. Для пластини при (4.4) і ; для циліндра (перше коріння рівняння ) і ; для сфери і . Теорія регулярного режиму знаходить широке застосування для експериментального визначення теплофізичних властивостей речовин і дослідження тепловіддачі. Наприклад, 2-а теорема Кондратьева лежить в основі експериментального визначення коефіцієнта температуропровідності. Пристрій, що використовується в дослідах, представляє собою зразок з досліджуваного матеріалу, забезпечений пристроями для вимірювання температури, і носить назву a-калориметра. На поверхні зразка, що виготовляють звичайно у вигляді сфери або циліндра, забезпечують як найбільший коефіцієнт тепловіддачі, з тим щоб виконувалася умова . При охолодженні в стадії регулярного режиму проводяться вимірювання температури і по рівнянню (4.52) визначається темп охолоджування, а потім по рівнянню (4.57) – шуканий коефіцієнт температуропровідності. Перша теорема Кондратьева (4.53) використовується для експериментального дослідження тепловіддачі. При цьому прагнуть забезпечити умови, при яких і . Тоді, маючи в своєму розпорядженні залежність температури від часу і відомості по об'ємній теплоємності матеріалу зразка , можна знайти коефіцієнт тепловіддачі.
Дата добавления: 2015-05-26; Просмотров: 897; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |