Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

До запитання про розв‘язання алгебричних рівнянь




 

2.3.1 Визначення кількості дійсних коренів

Наближено визначити кількість дійсних додатних коренів алгебричного рівняння

 

(2.2)

 

можна за допомогою правила Декарта: кількість дійсних додатних коренів алгебричного рівняння із дійсними коефіцієнтами дорівнює числу змін знаку в послідовності коефіцієнтів рівняння, або на парне число менше (коефіцієнти, що дорівнюють нулю не враховуються).

Кількість від‘ємних коренів алгебричного рівняння дорівнює числу змін знаку в послідовності коефіцієнтів рівняння або на парне число менше.

2.3.2 Визначення області існування коренів

Розглянемо два з декількох методів визначення верхньої межі додатних коренів рівняння .

Метод Лагранжа. Якщо коефіцієнти многочлена відповідають умовам a0 > 0, a1, a2, …,am-1 ≥ 0, am < 0, то верхня межа додатних коренів рівняння (2.2) визначається за формулою

(2.3)

де В – найбільша із абсолютних величин від‘ємних коефіцієнтів;

m – ступінь х при першому від’ємному коефіцієнті а.

Метод Ньютона. Якщо при х = С многочлен і його похідні , … приймають додатні значення, то С є верхньою межею додатних коренів рівняння .

Існує засіб визначення інших меж дійсних коренів з використанням методів визначення верхньої межі додатних коренів .

Якщо

рівняння ,

—″— —″— ,

—″— —″— ,

—″— —″— ,

то всі відмінні від нуля дійсні корені рівняння (якщо вони існують) лежать у середині інтервалів

і .

Визначимо, наприклад, межі додатних і від‘ємних коренів рівняння

.

Знайдемо за методом Лагранжа R1, R2, R3, R4. У многочлені a0 = 8

> 0; а1 = 0; а2 = -8 < 0; a3 = -32; a4 = 1, m = 2. Отже, .

Для многочлена

Аналогічно знаходимо .

Далі, для многочлена

a0 = 1 > 0; a1 = -32 < 0, тобто m = 1, B = 32 i R3 = 1 + 32 = 33.

Зрештою, для многочлена

Маємо a0 = 1 > 0; a1 = 32; a2 = -8; a3 = 0; a4 = 8, тобто m = 2; B = 8. Тому .

Отже, якщо задане рівняння має дійсні корені, вони обов‘язково лежать у межах (-2; -1 / 3,828) і (1 / 33; 3).

2.3.3 Обчислення значень многочлена. Схема Горнера

Розв‘язування алгебричних рівнянь як на етапі відокремлення коренів, так і при їх уточненні потребує багаторазових обчислень значень . Тому важливе значення має побудова найбільш економічних (з точки зору кількості операцій) алгоритмів.

Припустимо, що треба розрахувати значення многочлена (див. (2.2)) при . Обчислення вигідно проводити для перетвореного запису (2.2) до наступного вигляду

(2.4)

Послідовне обчислення чисел (n множень і n додавань)

· · · · · · ·

дає значення .

Алгоритм розрахунку , який складено на основі виразу (2.4) називають схемою Горнера. Саме у вигляді схеми розрахунки розташовують так:

+
+
+
+
+
a0 a1 a2 a3 … an-1 an

ε b0·ε b1·ε b2·ε … bn-2·ε bn-1·ε

b0 b1 b2 b3 … bn-1 bn.

В першому рядку записані коефіцієнти многочлена . В третій рядок переносять a0 = b0 і далі суму добутку кожного коефіцієнта bi на ε із аі+1.




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 635; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.032 сек.