Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 24. Основы дозиметрии 3 страница




, (E.2)

где функция точно вычисляется и протабулирована для различных значений заряда ядра и энергии β-частиц. В нерелятивистском приближении

, (E.3)

где x = ± Ze 2/ ћv (v – скорость β-частицы, Z – заряд дочернего ядра, знак «+» соответствует электронам, «–» позитронам).

 

 

ПРИЛОЖЕНИЕ Ж. Одночастичные резонансы

Рассмотрим движение частицы с массой m и кинетической энергией T над одномерной прямоугольной потенциальной ямой конечной глубины V, (рис. Ж). В области 1 (r < – ρ) решение уравнения Шредингера представляется суперпозицией падающей и отраженной волн:

, . (Ж.1)

В области 2 (– ρ < r < ρ) решение также будет суперпозицией двух волн: прошедшей через границу r = – ρ и отраженной от границы r = ρ:

, . (Ж.2)

В области 3 (r > ρ) существует только волна, прошедшая границу r = ρ:

. (Ж.3)

Для того чтобы вычислить коэффициенты прохождения и отражения частицы

, , (Ж.4)

надо выразить амплитуды А и B через C. Для этого сначала приравняем функции ψ 2 и ψ 3 и их первые производные на границе r = ρ. В результате получим следующие уравнения:

,

.

Складывая эти уравнения друг с другом и вычитая друг из друга, найдем, что

, (Ж.5)

. (Ж.6)

Далее, приравнивая ψ 1 и ψ 2 и их первые производные при r = – ρ, получаем вторую пару уравнений:

,

.

Решая их относительно A (также сложением и вычитанием уравнений), а затем используя (Ж.5) и (Ж.6), получим

, (Ж.7)

, (Ж.8)

где

, ,

а L = 2 ρ – ширина потенциальной ямы. Так как амплитуды С и А – комплексные числа, возведение их в квадрат дает для коэффициента прохождения

, (Ж.9)

где «звездочка» означает операцию комплексного сопряжения. Тогда, после подстановки (Ж.7) в (Ж.9) и алгебраических преобразований с использованием формулы Эйлера для представления комплексных чисел , получим

. (Ж.10)

Аналогичным образом можно вычислить коэффициент отражения и показать, что R = 1– D.

Если sin(k 2 L) в (Ж.10) отличен от нуля, то коэффициент прохождения не равен единице: имеется вероятность отражения частицы от потенциальной ямы. Однако при sin(k 2 L) = 0, или k 2 L = , где n – целое число, коэффициент прохождения строго равен единице (отражения нет). Подставляя эти значения k 2 в (Ж.2), найдем энергии, при которых коэффициент отражения равен нулю:

. (Ж.11)

Итак, при положительных энергиях, удовлетворяющих равенству (Ж.11), коэффициент прохождения D = 1 (при этом в яме укладывается целое число длин полуволн). Эти значения En называются резонансными энергиями. Как следует из (Ж.11), их последовательность продолжает последовательность энергетических уровней в очень глубокой потенциальной яме (ПРИЛОЖЕНИЕ Б). Расстояние между ближайшими резонансными энергиями определяется формулой

.

Состояния частицы в области потенциальной ямы, когда ее энергия выше, чем ее энергия связи с ямой, называются одночастичными резонансами. Отличие одночастичных резонансов от связанных состояний – способность покинуть пределы ямы и, следовательно, очень ограниченное время жизни.

 

 

ПРИЛОЖЕНИЕ З. Формулы Брейта-Вигнера

Время жизни квантовомеханической системы в квазистационарном состоянии не может быть бесконечно долгим. Поэтому волновая функция ψ такого состояния с энергией En зависит от времени:

(З.1)

(где частота ωn = En / ћ), причем временной множитель функции при t > 0 содержит не только мнимую, но и действительную экспоненту. Так как квадрат модуля волновой функции есть вероятность найти частицу «внутри системы», то

,

что соответствует экспоненциальному затуханию вероятности со временем (в соответствии с основным законом радиоактивного распада).

Рассмотрим для конкретности переход системы из возбужденного состояния в основное, сопровождающийся электромагнитным излучением. Каков будет спектр испускаемого излучения I (E)? Чтобы ответить на этот вопрос, разложим функцию (З.1) в интеграл Фурье[209] по частотам непрерывного спектра ω = E / ћ:

, (З.2)

где

. (З.3)

Так как функция ψ = 0 при t < 0, после подстановки (З.1) в (З.3) в результате интегрирования получаем:

. (З.4)

Как известно электродинамики, при излучении электромагнитных волн системой зарядов, совершающей гармонические колебания с частотой ω, энергия излучения пропорциональна квадрату амплитуды этих колебаний. С квантовой точки зрения это означает, что вероятность испускания фотона с энергией Е = ћω пропорциональна квадрату модуля амплитуды соответствующего коэффициента разложения волновой функции (З.1) по спектру частот:

. (З.5)

Из (З.5) следует, что интенсивность излучения достигает максимума при ω = ωn. Обозначив эту максимальную интенсивность как

и, переходя от частот к энергиям и к ширине уровня Г = ћλ, находим, что

. (З.6)

Таким образом, энергетический спектр излучения при экспоненциальном законе распада возбужденного состояния имеет форму кривой Лоренца с центром в точке Е = Еn и шириной на половине высоты равной Г.

Процесс, обратный испусканию, – резонансное поглощение – описывается той же зависимостью. Это значит, что сечение поглощения имеет вид

, (З.7)

где σ 0 – максимальное сечение, определяемое физикой процесса. Формулы вида (З.7) в ядерной физике называют формулами Брейта-Вигнера. Для взаимодействия бесспиновых частиц,[210] относительный орбитальный момент которых равен нулю,

, (З.8)

где – длина волны налетающей частицы a, Т – ее кинетическая энергия, Г a – ширина уровня при испускании налетающей частицы (упругое рассеяние); Г b – при испускании другой частицы b (реакция, или неупругий процесс); Г = Г a + Г b – полная ширина. В случае резонанса сечение упругого рассеяния

,

Это означает, что,если энергетически возможно только упругое рассеяние (Г b = 0), то максимальное сечение (в резонансе) равно

. (З.9)

Найдем, при каких условиях максимально сечение реакции. Для этого продифференцируем выражение (З.8) по Г b при условиях Т = En и Г = Г a + Г b.

,

откуда следует, что сечение реакции максимально при Г a = Г b и равно

. (З.10)

Таким образом, резонансные сечения упругого и неупругого процессов ограничены значениями (З.9) и (З.10). Кроме того, существует и ограничение и для полного сечения σ = σ ( a , a ) + σ ( a , b ):

. (З.11)

Из соотношений (З.9-З.11) следует, что упругое рассеяние возможно в отсутствие неупругих процессов (реакций), но не наоборот: неупругий процесс при любых условиях сопровождается упругим рассеянием.

ПРИЛОЖЕНИЕ И. Лобовое столкновение тяжелой частицы с электроном

 

Рассмотрим лобовое столкновение быстрой (но нерелятивистской) тяжелой частицы с массой ma и кинетической энергией T 0 c покоящимся (в лабораторной системе координат) электроном. Обозначив как p 0 импульс тяжелой частицы до столкновения, запишем законы сохранения энергии и импульса в рассматриваемой системе в общем виде:

,

,

где индексы а и е относятся к тяжелой частице и электрону после столкновения соответственно. Так как после столкновения обе частицы будут двигаться в направлении движения тяжелой частицы, последнее равенство можно записать в скалярной форме как

.

Предположим, что энергия Te, преданная электрону, мала по сравнению с его энергией покоя. В этом случае классическая связь между кинетической энергией и импульсом дает

,

или, после алгебраических преобразований,

.

Так как масса электрона много меньше массы тяжелой частицы, то первым слагаемым правой части по сравнению со вторым можно пренебречь. Тогда после сокращения на pe получим

.

Выразив импульс тяжелой частицы через ее скорость va, найдем, что импульс электрона

,

а его кинетическая энергия

.

Определим теперь условие, при котором характер движения электрона можно считать классическим. Для этого выразим кинетическую энергию электрона через начальную кинетическую энергию тяжелой частицы:

,

откуда

.

Релятивистские эффекты становятся существенными, если кинетическая энергия электрона составляет ~10% от его энергии покоя mec 2 = 0,511 МэВ. Так как электрон легче нуклона примерно в 1820 раз, движение электрона будет подчиняться законам классической механики, если тяжелая частица представляет собой протон с кинетической энергией T 0 < 23 МэВ, ядро 4Не с энергией < 93 МэВ, и т.д.

 

 

ПРИЛОЖЕНИЕ К. Законы сохранения энергии и импульса при испускании и поглощении фотонов

Законы сохранения энергии и импульса нередко накладывают запрет на протекание электромагнитных процессов в вакууме, если только эти процессы не сопровождаются изменением внутреннего состояния частиц. Продемонстрируем это на примере электрона как частицы, не имеющей состояний, связанных с внутренним возбуждением. Диаграмма, изображенная на рис. К, соответствует следующим процессам: 1) испусканию фотона свободным электроном; 2) поглощению фотона свободным электроном; 3) однофотонной аннигиляции электрона и позитрона; 4) распаду фотона на электрон и позитрон. Покажем, что ни один из четырех процессов не имеет места в отсутствие других частиц.

При испускании или поглощении фотона свободным электроном закон сохранения энергии будет выглядеть как

(К.1)

где β 1 > β 2, т.е. индекс «1» относится к электрону с более высокой энергией. При однофотонной аннигиляции или образовании электрон-позитронной пары

(К.2)

Выразим для удобства импульсы частиц в единицах mec. Для электронов

. (К.3)

Для фотона из (К.1) и (К.2) получаем

. (К.4)

Так как один из импульсов равен векторной сумме или разности двух других, векторы импульсов образуют треугольник. Значит, неравенство треугольника должно выполняться для любой пары импульсов. Покажем, что при образовании электрон-позитронной пары не выполняется неравенство

. (К.5)

Подставляя в (К.5) результаты (К.3) и (К.4), имеем:

. (К.6)

Так как скорость электрона всегда меньше скорости света в вакууме, β 1 и β 2 всегда меньше единицы. Следовательно, неравенство (К.6) не может быть выполнено. Таким образом, образование фотоном электрон-позитронной пары в вакууме невозможно, как невозможен и обратный процесс однофотонной аннигиляции.

При испускании фотона свободным электроном нарушается неравенство

, (К.7)

или

. (К.8)

Действительно, после преобразований (К.8), имеем следующее:

Так как по условию β 1 > β 2, то

.

Очевидно, что последнее условие невыполнимо, а поэтому невозможно ни испускание, ни поглощение фотона свободным электроном.

 

 

ПРИЛОЖЕНИЕ Л. Рассеяние фотона на свободном электроне

 

Рассмотрим столкновение фотона со свободным электроном в рамках релятивистской механики. Обозначим через Eγ и p γ энергию и импульс фотона до рассеяния, а через Eγ ’ и p γ ’ – после рассеяния. Для электрона полная энергия и импульс до рассеяния будут соответственно E 0 = mec 2 и 0 (электрон до рассеяния покоился), а после рассеяния Ee и p e. Тогда законы сохранения энергии и импульса дают

.

Отсюда

. (Л.1)

Для каждой частицы величина

есть инвариант, причем для фотона этот инвариант равен нулю. С учетом этого

.

Подставляя это в (Л.1), получаем

,

или

. (Л.2)

Обозначив угол рассеяния фотона (угол между векторами p γ и p γ ’) через θ, перепишем (Л.2) в виде

. (Л.3)

Выразим теперь импульсы падающего и рассеянного фотона через соответствующие длины волн: и . Тогда

. (Л.4)

Из (Л.4) следует независимость комптоновского смещения от рассеивающего вещества и первоначальной длины волны. Постоянная

(Л.5)

– одна из важнейших атомных постоянных. Она называется комптоновской длины волны электрона и представляет собой изменение длины волны фотона при его рассеянии на угол θ = π/2. Ее связь с другими постоянными: , где α = e 2/ ħc – постоянная тонкой структуры, re = e 2/ mec 2 – классический радиус электрона. Существуют также комптоновские длины волн протона, нейтрона и других элементарных частиц. Все они определяются формулой (Л.5), если вместо массы электрона в нее подставить массу соответствующей частицы.

При рассеянии фотона на электроне последний получает энергию отдачи

. (Л.6)

Переписав (Л.3) в виде

и выразив из (Л.6) Eγ ’, найдем, что

. (Л.7)

Как следует из (Л.7), кинетическая энергия комптоновского электрона минимальна (равна нулю) при рассеянии фотона вперед (θ = 0) и максимальна при обратном рассеянии (θ = π). В последнем случае

, (Л.8)

где x = 2 Eγ / E 0. Таким образом, при увеличении энергии фотона максимальная энергия комптоновских электронов стремится к величине Eγ.

 

 

ПРИЛОЖЕНИЕ М. Элементарные процессы в газовых детекторах

 

Газовый ионизационный детектор представляет собой наполненный газом сосуд, содержащий два электрода, между которыми приложена разность потенциалов U. Наиболее распространенной является коаксиальная геометрия электродов: цилиндрический катод и анод в виде тонкой нити по оси цилиндра. При такой конфигурации электрическое поле внутри детектора сильно неоднородно: напряженность поля быстро возрастает к аноду.

В отсутствие электрического поля движение электронов и ионов в газе имеет характер диффузии, результатом которой является выравнивание их концентраций во всем объеме. Однако в присутствии поля возникает общий дрейф электронов к аноду и положительных ионов к катоду. Средняя скорость дрейфа w связана с напряженностью электрического поля Е величиной K, называемой подвижностью носителей заряда:

. (М.1)

Подвижность электронов имеет различные значения для разных газов. Кроме того, она зависит от напряженности поля и давления газа p. Однако существует достаточно широкая область значений Е/р, при которых значения K практически постоянны. Подвижности положительных и отрицательных ионов на три порядка меньше подвижности электронов.

Под действием заряженных частиц происходит ионизация газа. При этом на пути частицы с начальной кинетической энергией Тa образуется ni = Тa / W пар положительных ионов и свободных электронов, где W – средняя энергия ионообразования. Величина W практически не зависит от вида частиц и их энергии. Для α-частиц величина ni обычно составляет десятки тысяч; для быстрых электронов она во много раз меньше.

Поведение образовавшихся заряженных частиц зависит от условий внутри детектора, в том числе от напряженности электрического поля и давления газа. Свободные электроны и ионы испытывают множество столкновений с молекулами газа и друг с другом. Путь между двумя последовательными столкновениями называется длиной свободного пробега. Эта величина носит вероятностный характер и определяется распределением сталкивающихся частиц по энергиям. Средняя длина свободного пробега пропорциональна температуре и обратно пропорциональна давлению газа:

, (М.2)

где величина s называется транспортным сечением рассеяния.

При столкновениях электронов с молекулами и ионами наблюдается несколько конкурирующих процессов. Свободные электроны могут прилипать к нейтральным молекулам, образуя отрицательные ионы. Коэффициент прилипания определяется как вероятность присоединения электрона к нейтральной молекуле или атому при одном столкновении исоставляет ~10–3 для галогенов, 10–4 для кислорода и паров воды, 10–6 и меньше для аргона, водорода, азота и других электроположительных газов. Прилипание электронов приводит к уменьшению подвижности отрицательных зарядов.

Положительные ионы и электроны (или отрицательные ионы), находящиеся в одной и той же области пространства, могут рекомбинировать, вновь образуя нейтральные частицы. Скорость рекомбинации пропорциональна локальным концентрациям ионов и электронов. Выделяющаяся энергия рекомбинации обычно идет на возбуждение атома (молекулы), однако при больших плотностях газа, когда вероятны тройные столкновения, эту энергию полностью или частично уносит третья частица.

Разряд в газе начинается с того, что свободные электроны, ускоряясь под действием разности потенциалов, приобретают энергию большую, чем потенциал ионизации молекул газа и, следовательно, достаточную для ударной ионизации. Если при столкновении электрона с нейтральной молекулой происходит ионизация, то образуется еще один электрон, который также может ионизировать, и процесс приобретает лавинный характер. Чтобы обеспечить развитие лавинной ионизации, на нить детектора подается положительный потенциал. В этом случае

, (М.3)

где r – расстояние до анода, RK и RA – радиусы катода (цилиндра) и анода (нити). Таким образом, напряженность поля максимальна вблизи анода.

Коэффициент ударной ионизации, численно равный числу актов ионизации, осуществляемых одним электроном на единице длины пути, является важнейшей характеристикой реакции, приводящей к развитию газового разряда. Вероятность ионизации молекулы электронным ударом тем выше, чем больше энергия электрона. Следовательно, коэффициент ударной ионизациирастет с ростом напряженности поля и длины свободного пробега электрона. Энергию, достаточную для ударной ионизации, электроны приобретают лишь тогда, когда подлетают к аноду на расстояние, равное нескольким свободным пробегам.

После прохождения первой лавины могут возникать повторные, причем за счет двух основных механизмов вторичной ионизации. Первый механизм обусловлен тем, что при развитии лавины электроны возбуждают нейтральные молекулы, которые, возвращаясь в основное состояние, испускают фотоны. Эти фотоны выбивают из катода путем фотоэффекта электроны, которые и являются родоначальниками новых лавин. Второй механизм заключается в том, что положительные ионы, доходя до катода, выбивают из него электроны в процессе нейтрализации (ионно-электронная эмиссия). Необходимая для выбивания энергия выделяется в процессе нейтрализации иона, поскольку потенциал ионизации газа, заполняющего детектор, всегда в несколько раз выше потенциала ионизации металла, из которого изготовлен катод (4-5 эВ). Например, потенциал ионизации аргона равен 15,7 эВ, так что при нейтрализации иона аргона на катоде выделяется энергия около 11 эВ, которая более чем достаточна для выбивания электрона.

Если интенсивность вторичной ионизации слабая и для поддержания воспроизводства электронов требуется действие внешнего ионизатора, то такой газовый разряд называется несамостоятельным. В случае, когда процессы ионизации развиваются и при прекращении действия внешнего ионизатора, возникает самостоятельный разряд. Отношение числа электронов N, собирающихся на аноде, к первоначальному числу электронов ni, образованных ионизирующим излучением, называется коэффициентом газового усиления М. Изменение разности потенциалов между электродами газового детектора при пролете через него ионизирующей частицы (электрический импульс) равно

, (М.4)

где eN – заряд, собранный на электродах, С – суммарная электрическая емкость детектора и подводящих проводов. Именно этот импульс поступает в усилитель и, в конечном счете, измеряется. На рис. М представлена зависимость величины D U (числа собираемых пар ионов) от U для различных ионизирующих частиц, проходящих через детектор.

На начальном участке М < 1 вследствие рекомбинации электронов и ионов. C ростом разности потенциалов увеличивается скорость дрейфа и соответственно уменьшается вероятность рекомбинации. Зависимость D U от U близка к линейной. При увеличении U практически все образовавшиеся электроны и ионы собираются на электродах, величина импульса постоянна и определяется только количеством ионов, которые образуются в объеме детектора ионизирующим излучением (М = 1). В этой области работают ионизационные камеры.

При дальнейшем увеличении U величина импульса вновь возрастает, так как растет вероятность ударной ионизации. Образуется лавинный разряд, который прекращается, как только все электроны и ионы достигают электродов. В этой области М > 1, а амплитуда импульса все еще пропорциональна первичной ионизации. Поэтому детекторы, работающие в этой области, называются пропорциональными счетчиками.




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 487; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.102 сек.