Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Элементы сетевых моделей




Преимущества сетевых методов планирования и управления

Использование методов сетевого планирова­ния и позволяет:

- четко отобразить объем и структуру решаемой проблемы, вы­явить с любой требуемой степенью детализации работы, образующие единый комплекс процесса разрешения проблемы; определить события, совершение которых необходимо для достижения заданных целей;

- выявить и всесторонне проанализировать взаимосвязь между работами, так как в самой методике построения сетевой модели зало­жено точное отражение всех зависимостей, обусловленных состояни­ем объекта и условиями внешней и внутренней среды;

- разработать обоснованный план действий по созданию системы или решению проблемы, поскольку при составлении сети используют­ся опыт и знание большого коллектива квалифицированных специали­стов и экспертов, принимающих непосредственное участие в ее раз­работке;

- более эффективно использовать ресурсы, так как анализ сете­вой модели и выявление "критических" работ и резервов времени на "некритических" работах позволяют определить пути рационального перераспределения ресурсов и ускорить достижение целей;

- широко использовать современную вычислительную технику, бла­годаря чему появляется возможность более точно учесть влияние тех или иных факторов, проверить эффективность различных вариантов действий и своевременно осуществлять перераспределение ресурсов;

- сконцентрировать внимание органов управления на работах, в первую очередь, определяющих достижение целей, и таким образом заблаговременно выявлять возможные "узкие места" и своевременно принять меры по их устранению;

- быстро обрабатывать большие массивы отчетных данных и обеспечивать руководство своевременной и исчерпывающей инфор­мацией о фактическом состоянии реализации программы, что создает благоприятное условие для принятия обоснованных решений;

- упростить и унифицировать отчетную документацию.

Наиболее эффективными областями применения сетевых мето­дов планирования и управления является управление крупными целе­выми программами, научно-техническими разработками и инвестици­онными проектами, а также сложными комплексами социальных, эко­номических и организационно-технических мероприятий на федераль­ном и региональном уровнях.

Сеть с математической точки зрения представляет собой ориен­тированный связанный конечный граф без контуров, отражающий ре­ально существующие отношения между работами программы.

В сете­вой модели комплекс действий, направленных на достижение какой-либо заданной цели, расчленяется на отдельные, четко определенные операции-работы, которые располагаются в организационно-технологической последовательности их выполнения, которая опреде­ляет взаимную связь работ и очередность получения всех промежу­точных и конечных результатов данной модели.

Существует несколько способов изображения сетевых моделей: цифровой, табличный и с помощью различных технических средств (световое табло, механические модели и другие). Наибольшее распро­странение получило графическое представление сетевой модели на плоскости, называемое сетевым графиком. Ее главное преимущество -наглядность и доступность в понимании.

Сетевые модели могут быть ориентированы на события или на работы. Первые применяются сравнительно редко, поскольку не со­держат четкого определения работ.

Модели, ориентированные на работы, получили наибольшее рас­пространение в практике планирования и управления социально-экономическими системами. В таких моделях дуга, соединяющая две вершины, представляет собой протекающий во времени процесс. Сле­дует отметить, что любые две работы программы могут быть связаны между собой условием предшествования, когда одна из них выполня­ется лишь после завершения другой, либо не иметь такой связи. В по­следнем случае допустимо их выполнение в любой последовательно­сти, в том числе и одновременно.

Вершина графика представляет собой событие, означающее со­вокупность условий, которые позволяют начать одну или несколько вы­ходящих из данной вершины работ или результат завершения входя­щих в нее работ.

Поскольку всякая работа, за исключением фиктивной, является процессом или действием, которое нужно совершить, чтобы перейти от начального к конечному событию данной работы, ее продолжитель­ность может быть количественно измерена в единицах времени. Одна­ко работы могут иметь и другие количественные оценки, характери­зующие ее трудоемкость, стоимость, материальные ресурсы и т.д.

В отличие от работы событие не является процессом, а опреде­ляет факт получения обобщающего конечного результата всех непо­средственно предшествующих ему работ и готовность к началу непо­средственно следующих за ним работ. Отсюда двойственный характер события: для всех непосредственно предшествующих ему работ оно является конечным, а для всех непосредственно следующих за ним работ - начальным.

Особенность исходного собы­тия состоит и в том, что оно не является следствием или результатом ни одной из работ, входящих в данную сеть, и не имеет предшествую­щих работ. Определение завершающего события представляет со­бой формулировку конечной цели данного комплекса операций, и оно не является условием начала ни одной из работ рассматриваемого графика, а, следовательно, и не имеет последующих работ.

Непрерывная последовательность работ, то есть последова­тельность работ в сети, у которой конечное событие каждой работы совпадает с начальным событием следующей за ней работы, называ­ется путем.

Различают:

- полный путь - путь от исходного до завершающего события;

- предшествующий путь - участок полного пути от исходного со­бытия до данного;

- последующий путь - участок полного пути от данного события до завершающего.

Продолжительность пути измеряется суммой продолжительности составляющих его работ. В зависимости от продолжительности разли­чают:

- критический путь - полный путь, имеющий наибольшую про­должительность из всех полных путей. Он определяет срок выполне­ния работ по сетевому графику. Работы, лежащие на критическом пу­ти, называются критическими. Увеличение продолжительности крити­ческих работ соответственно увеличивает общую продолжительность работ по графику. В сетевом графике может быть несколько критиче­ских путей.

Критический путь обычно выделяется утолщенной линией или другим способом;

- подкритический путь - полный путь, продолжительность ко­торого меньше продолжительности критического пути на заданную ве­личину. Такой величиной может быть, в частности, периодичность съема информации о ходе реализации программы;

- критическая зона - совокупность всех критических и подкритических работ.

44. Правила построения сетевых моделей

Сеть с математической точки зрения представляет собой ориен­тированный связанный конечный граф без контуров, отражающий ре­ально существующие отношения между работами программы.

В сете­вой модели комплекс действий, направленных на достижение какой-либо заданной цели, расчленяется на отдельные, четко определенные операции-работы, которые располагаются в организационно-технологической последовательности их выполнения, которая опреде­ляет взаимную связь работ и очередность получения всех промежу­точных и конечных результатов данной модели.

Первое правило: в сети не должно быть событий, из которых не выходит ни одной работы, если только эти события не являются для данной сети завершающими. Наличие тупика означает одно из двух:

- либо то, что при вычерчивании графика ошибочно не ука­зана связь данного события с каким-либо другим событием сети и, та­ким образом, в сети получился разрыв;

- либо то, что результат работы, непосредственно предше­ствующей этому событию, никому из исполнителей данного комплекса операций не нужен и, следовательно, такое событие является лишним и должно быть аннулировано.

Второе правило: в сети не должно быть событий, в которые не входит ни одной работы, если только эти события не являются для дан­ной сети исходными. Наличие таких событий в сети свидетельствует:

- либо о случайной ошибке, в результате которой в сети по­лучился разрыв;

- либо о том, что начало работ, выходящих из такого собы­тия, не требует предварительного окончания других работ.

Третье правило: в сети не должно быть замкнутых контуров, путей, соединяющих какое-либо событие с ним же самим. Наличие та­ких контуров указывает на случайную или логическую ошибку, допу­щенную при построении сети. Если строго придерживаться понятий работы и события, то нетрудно убедиться, что наличие замкнутого контура противоречит логике любого процесса и лишено права на су­ществование.

Четвертое правило: в сети не должно быть работ и событий, имеющих одинаковые шифры. Подобная ошибка чаще всего встреча­ется при изображении параллельно выполняемых работ. В целях уст­ранения ошибки в подобных случаях в сеть должны быть введены до­полнительные события и фиктивные работы

а) неправильно б) правильно

Пятое правило: если какие-либо работы в сети могут быть на­чаты до полного окончания непосредственно предшествующей им ра­боты, то последняя должна быть расчленена на такие последователь­но выполняемые работы, результаты которых необходимы и доста­точны для возможности начать интересующие нас работы

Шестое правило: если для выполнения какой-либо работы не­обходимо получить результаты не всех входящих в ее начальное со­бытие работ, а только части из них, то для этой работы нужно ввести новое начальное событие, и соединить его с прежним начальным со­бытием фиктивной работой.

Седьмое правило: если необходимо укрупнить сетевой график, то группа работ на детальной модели может быть заменена одной рабо­той, если вся заменяемая группа работ имеет одно начальное и одно конечное событие.




Поделиться с друзьями:


Дата добавления: 2015-05-29; Просмотров: 856; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.