Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Нитраты, нитриты, нитрозоамины 1 страница




 

Нитраты широко распространены в природе, они являются нормальными метаболитами любого живого организма, как растительного, так и животного, даже в организме человека образуется и используется в обменных процессах более 100 мг нитратов. Тем не менее, мы постоянно слышим об опасности нитратов.

Главной причиной всех негативных последствий являются не столько нитраты, сколько их метаболиты – нитриты. Нитриты, взаимодействуя с гемоглобином, образуют метгемоглобин, не способный переносить кислород. В результате уменьшается кислородная емкость крови и развивается гипоксия (кислородное голодание). Для образования 2000 мг метгемоглобина достаточно 1 мг нитрита натрия. В нормальном состоянии у человека содержится в крови около 2% метгемоглобина. Если содержание метгемоглобина возрастает до 30%, то появляются симптомы острого отравления (одышка, тахикардия, цианоз, слабость, головная боль), при 50% метгемоглобина может наступить смерть. Концентрация метгемоглобина в крови регулируется метгемоглобинредуктазой, которая восстанавливает метгемоглобин в гемоглобин. Метгемоглобинредуктаза начинает вырабатываться у человека только с трехмесячного возраста, поэтому дети до года, и особенно до трех месяцев, перед нитратами беззащитны.
В литературе, посвященной химизму нитратов, нет сообщений о выделении нитритов из организма человека. Н.И. Опополь считает, что основная их часть идет на образование метгемоглобина. Доказано, что даже при больших концентрациях нитратов в крови (2215 мг/кг) содержание метгемоглобина составляет только 2,1–4,5%, что намного меньше опасных концентраций. Содержание меггемоглобина возрастает до опасных значений только при поступлении в кровь нитритов. Восстанавливают нитраты в нитриты различные микроорганизмы, заселяющие преимущественно кишечник. Степень восстановления нитратов, как и при хранении продуктов, зависит от тех же факторов: количества нитратов в продуктах и условий жизнедеятельности микроорганизмов. Для развития кишечной микрофлоры благоприятна слабощелочная и нейтральная среда. Наиболее чувствительны к нитратам люди с пониженной кислотностью желудка. Это дети до года и больные гастритом и диспепсией. У таких людей микрофлора толстого кишечника может проникать в желудок, и тогда резко увеличивается процент восстановления нитратов по сравнению со здоровыми людьми.

Если до 60-х годов главной опасностью неумеренного использования нитратных удобрений считалась метгемоглобинемия, то сейчас большинство исследователей считают главной опасностью рак, в первую очередь рак желудочно-кишечного тракта. В присутствии нитритов практически из любых продуктов, как в желудке, так и в кишечнике могут синтезироваться канцерогенные нитрозамиды и нитрозамины.

где R1 и R2 – алкильные, арильные, гетероциклические радикалы

Восемьдесят процентов образующихся нитрозоаминов обладают канцерогенным, мутагенным, тератогенным действием, причем канцерогенное действие этих соединений определяющее. Нитрозоамины могут образовываться и в окружающей среде, так, с питьевой водой человек получает 0,01 мкг нитрозосоединений в сутки. В результате технологической обработки сырья, полуфабрикатов (интенсивная термическая обработка, копчение, соление, длительное хранение) образуется широкий спектр нитрозосоединений. Кроме этого, как уже говорилось, нитрозоамины образуются в организме человека в результате эндогенного синтеза из предшествен­ников (нитратов, нитритов).

Наибольшее распространение получили такие нитрозосоединения как N-нитрозодиметиламин (НДМА), N-нитрозодиэтиламин (НДЭА), N-нитрозодипропиламин (НДПА), N-нитрозодибутиламин (НДБА), N-нитрозопиперидин (НПиП), N-нитрозопирролидин (НПиР).

Основными источниками поступления нитратов и нитритов в организм человека являются, в первую очередь, растительные продукты и питьевая вода. И поскольку нитраты являются нормальным продуктом обмена азота в растениях, нетрудно предположить, что их содержание зависит от следующих факторов:

- индивидуальных особенностей растений; существуют так называемые растения «накопители» нитратов, это в первую очередь, листовые овощи (салат, шпинат), а также корнеплоды, например, редис, свекла;

- степени зрелости плодов; недозрелые овощи, картофель, а также овощи ранних сроков созревания могут содержать нитратов больше, чем достигшие нормальной уборочной зрелости;

- возрастающего и часто бесконтрольного применения азотных удобрений (неправильная дозировка и сроки внесения);

- использование некоторых гербицидов и дефицит молибдена в почве нарушают обмен веществ в растениях, что приводит к накоплению нитратов.

Интересно, что нитраты неравномерно распределяются в пределах различных частей растения. Поскольку источник поступления нитратов в растения один – внешняя среда, то чем ближе к корням и чем богаче органы растения проводящими системами, тем больше в них нитратов. В стебле, черешках и главных жилках листьев, в корнеплодах, особенно в центральной части. Нитратов мало в самих тканях, бутонах, цветках, плодах и семенах. Плоды могут содержать значительно меньше нитратов, чем другие части растений. Особенно это характерно для томатов, кабачков, початков кукурузы, зеленого горшка. В наружных листьях капусты нитратов в 2 раза больше, чем в центральной части качана. При удалении с плода огурца кожицы, содержание нитратов уменьшается в 2 раза. В недозревших овощах нитратов оказывается намного больше, чем в созревших.

Выше говорилось об общей закономерности накопления нитратов. Однако у различных растений есть и свои индивидуальные особенности. Известны, так называемые, «накопители» нитратов. К ним относятся зеленые овощи: салат, ревень, петрушка, шпинат, щавель, которые могут накапливать до 200–300 мг нитратов в 100г зелени. Свекла и редис могут шокирующие значения нитратов. В таблице 3.8 приводятся литературные данные по обнаруживаемому содержанию нитратов в некотрых продуктах питания. Следует отметить, что вопрос загрязнения нитратами продуктов питания и питьевой воды исследутеся на кафедре аналитической химии Белгосуниверситета профессором Е.М.Рахманько. В результате исследований выяснилось, что литературные данные оказываются не такми уж и страшными по сравнению с реальной ситуацией. Так, Е.М.Рахманько анализировались образцы: свеклы, содержащей нитратов более 10000 мг/кг при ПДК 1400 мг/кг; редиса – более 6000 мг/кг.

Таблица 3.8. – Содержание нитратов в некоторых видах продуктов

(данные иститута питания РАМН)

Наименование продукта Содержание нитратов, мг/кг Наименование продукта Содержание нитратов, мг/кг
Свекла 39–7771 Шпинат 621–2417
Редис 41–4527 Щавель 53–875
Редька 98–2731 Арбуз 6–94
Капуста ранняя (свежая) 509–1010 Соки плодово-ягодные (конс.) 0–56
Капуста поздняя (свежая) 14–3467 Соки овощные (консервир.) 10–108
Капуста квашеная 46–320 Яблоки 2,7–55
Картофель 4–1218 Слива 2,5–3,1
Морковь 15–900 Клюква 2,5–3,3
Огурцы (закрытый грунт) 67–765 Черника 2,6–4,0
Огурцы соленые 83–120 Молоко 1,1–14,0
Помидоры 3–365 Творожные изделия 1,5–6,5
Кабачки 291–672 Говядина свежая 0–4,0
Укроп 30–4074 Колбаса «Докторская» 2,4–5,8
Петрушка 388–2022 Рыба речная 3–43
Лук перо 701–968 Рыба морская 14–21
Перец сладкий 10–517  

 

Результаты анализа питьевой воды тоже неутешающие: в образцах воды, отобранных из скважин за пределами г. Минска, стабильно обнаруживается 50–90 мг/л нитратов, а в образцах воды из колодцев – 400-1500 мг/л при ПДК нитратов в питьевой воде 45 мг/л, а для детей – 10 мг/л!

Для сравнения реально обнаруживаемого содержания нитратов с предельно допустимым, ниже приводятся установленные в РБ значения ПДК нитратов для овощей и фруктов (табл. 3.9).

 

Таблица 3.9. – Предельно допустимые концентрации нитратов в продуктах растениеводства

Продукт Содержание, мг/кг
Kартофель  
Kапуста белокочанная ранняя  
Kапуста белокочанная поздняя  
Морковь ранняя  
Морковь поздняя  
Томаты 150/300
Огурцы 150/400
Свекла столовая  
Лук репчатый  
Листовые овощи (салат, петрушка, укроп)  
Перец сладкий  
Kабачки  
Дыни  
Арбузы  
Виноград  
Яблоки, груши  

 

Помимо растений, источниками нитратов и нитритов для человека являются мясные продукты, а также колбасы, рыба, сыры, в которые добавляют нитрит натрия или калия. Нитриты используются в качестве консерванта и для сохранения привычной окраски мясопродуктов, т.к. образующийся при этом NO-миоглобин сохраняет красную окраску даже после тепловой денатурации, что существенно улучшает внешний вид и товарные качества мясопродуктов.

Что касается нитрозаминов, то их больше всего содержится в копченых мясных изделиях, колбасах, приготовленных с добавлением нитритов, – до 80 мкг/кг, в соленой и копченой рыбе – до 110 мкг/кг. В свежем мясе и рыбе нитрозамины не обнаруживаются или находятся в следовых количествах – менее 1 мкг/кг. При жарении мяса на открытом пламени белки взаимодействуют с жирами с образованием нитрозоаминов. Из молочных продуктов нитрозамины обнаружены главным образом в сырах, прошедших фазу ферментации (до 10 мкг/кг). Из растительных продуктов нитрозамины обнаруживаются в основном в солено-маринованных изделиях, а из напитков – в пиве, где суммарное содержание их может достигать 12 мкг/л.

Широкое применение нитрозоаминов в промышленности, а также использование азотных удобрений и пестицидов в сельском хозяйстве приводит к загрязнению поверхностных и подземных вод,т.к. нитрозамины хорошо растворимы в воде. Установлено, что меньше всего нитрозоаминов содержится в зернах пшеницы, тогда как в корнеплодах их содержание очень высокое. В овощах (картофель, помидоры, лук, перец), а также в винограде и дынях, не подвергавшихся технологической обработке и содержащих относительно малое количество нитритов, нитрозоамины практически отсутствуют. Наибольшее количество нитрозоаминов найдено в свекле и черной редьке (0,7–1,5 мкг/кг), в которых содержание нитритов и нитратов составляло соответственно 4370 и 360 мг/кг. При длительном хранении продуктов растительного происхождения концентрация нитрозоаминов возрастает. Если для кормления животных (коров) используют корма с пастбищ, где вносились азотные удобрения, то в сыре обнаруживаются нитрозоамины.

Нитраты являются одними из наиболее часто встречающихся вредных веществ в продуктах питания, поэтому необходимо и полезно знать возможности снижения нитратов в пище, а также путиподавления образования канцерогенных нитрозосоединений.

Известно, что нейтрализация нитритов позволяет тормозить образование нитрозосоединений. Введение крысам в желудок сначала ионола и аскорбиновой кислоты, а затем нитратно-нитритной смеси уменьшает образование нитрозоаминов в желудке крыс на 27,5–30% и 26–76% соответственно. Введение овощных или фруктовых соков вместо ионола и аскорбиновой кислоты приводит к снижению (от 85,7 до 29,1%) содержания нитрозоаминов и степень ингибирования прямо пропорциональна количеству введенных соков. Клюквенный сок, напротив, увеличивает образование нитрозоаминов. Поэтому, перед употреблением высоконитратной пищи (капусты, огурцов, колбасы) можно принять аскорбиновую кислоту или выпить фруктовый сок. Рекомендуется добавлять в продукты несколько сот миллиграммов на килограмм аскорбиновой кислоты (сто миллиграммов – это 2–3 драже витамина С), что во многих случаях полностью предотвращает образование N-нитрозодиметиламина. Предполагают, что резкое уменьшение количества витамина С в растительной продукции при хранении вызвано взаимодействием его с нитратами и нитритами. При варке и тушении удаление нитрозоаминов с паром преобладает над их образованием, поэтому в процессе приготовления капусту, свеклу, кабачки не нужно закрывать крышкой.

Следует также указать, что в зависимости от способа приготовления пищи количество нитратов снижается неодинаково. При варке картофеля в воде уровень нитратного азота падает на 40–80%, на пару – на 30–70%, при жарений в растительном масле – на 15%, во фритюре – на 60%. При предварительном замачивании картофеля в 1%-ном растворе хлористого калия и 1%-ном аскорбиновой кислоты и дальнейшем жарений во фритюре степень нитратов падает на 90%. В отварной моркови количество нитратного азота снижается в 2 раза. В отварной свекле количество нитратов остается таким же, как и в сырых корнеплодах. Наибольшее количество нитратов теряла в процессе варки капуста, почти 60% от исходного уровня. Морковь, свекла и картофель неочищенный теряют примерно одинаковое их количество (17–20%). Очистка клубней картофеля привела к резкому (более чем в 2 раза) увеличению потерь нитратов, т.е. кожица клубней является определенным барьером для перехода нитратов в воду. В плодах соленых томатов количество нитратного азота возрастает в 1,4–1,8 раза. При этом в рассоле содержание нитратов в 2,2–2,8 раза больше, чем в исходных свежих плодах, что обусловлено применением приправы зеленых овощей (укроп, петрушка, чеснок), содержащих повышенное количество нитратов.
В томатном соке, подвергающемся термической обработке, количество нитратов уменьшается в 2 раза. При 57%-ном выходе сока моркови и 80%-ном выходе сока из столовой свеклы значительная часть нитратов переходит в жидкую фазу, хотя их количество в соке зависит от вида продукции. Так, в морковный сок из корнеплодов переходит около 44% нитратного азота от общего количества его в сырье. У свеклы почти 80% их также переходит в сок. При производстве сухих вин нитраты переходят в сок. Полученные вина могут содержать от 1 до 47,8 мг/л нитратного азота. Известно, что концентрация нитратов выше 8 мг/л существенно сказывается на вкусовых качествах продукта, он приобретает вяжущий, кисловато-соленый вкус. Свежеприготовленные соки могут стать опасными для здоровья, если длительное время не подвергаются дальнейшей обработке вследствие быстрого перехода нитратов в нитриты. При хранении свекольного сока в течение суток при 37°С количество нитритов возросло от нулевого содержания до 296 мг/л, при комнатной температуре – до 188 мг/л, а в холодильнике – до 26 мг/л. В процессе сушки продукта или упаривания жидкости зачастую происходит увеличение количества нитратов.

Нитраты, как отмечалось выше, сами по себе не обладают выраженной токсичностью, однако одноразовый прием 1–4 г нитратов вызывает у людей острое отравление, а доза 8–14 г может оказаться смертельной. Допустимая суточная доза, в пересчете на нитрат ион, составляет 5 мг/кг массы тела. В России реальная суточная доза составляет в среднем 150–350 мг на человека, достигая иногда 500 и более мг. В обычных условиях в организм человека 70–85% нитратов поступает с продуктами растительного происхождения. Значительная часть нитратов поступает также с питьевой водой.

Принятая ПДК для нитритов – 1 мг/л – установлена по токсикологическим критериям без учета канцерогенного эффекта. В связи с этим в литературе высказывается мнение, что необходимо уменьшить существующие ПДК до 0,01 мг/л. ПДК в питьевой воде для нитрозодиэтиламина – 0,03 мкг/л.

Определение нитратов, нитритов и нитрозаминов. Для определения нитратов и нитритов разработан целый ряд методик. Определять нитрозамины в продуктах питания гораздо сложнее. Благодаря летучести нитрозаминов, как правило, в этих целях используют газовую хроматографию с флуоресцентным детектором.

Фотометрический метод определения нитратов и нитритов. Фотометрический метод определения нитратов и нитритов распространяется практически на все продукты: на все виды свежей и кулинарно-переработанной раститель­ной продукции; на плодоовощные консервированные, продукты, включая консервы для детского питания, в рецептуру которых могут вхо­дить, помимо растительной части, также жиры, мясо, молочные продукты; на все виды зерна и зернопродуктов; на все виды молочных продуктов.

Сущность метода определения нитритов заключается в экстрагировании их водой, очистке экстракта и фотометрическом измерении интенсивности окраски азосоединения, образующегося при взаимодействии нитритов с ароматическими аминами. Нижний предел определения нитритов – 0,02 мг NO2 в 1 см3 колориметрируемого раствора. Нижний предел определения нит­ритов в анализируемой пробе – 0,1 мг NO2/кг(для жидких продук­тов) и 0,5 мг NO2/кг (для твердых продуктов).

Сущность метода определения нитратов заключается в экстрагировании их водой, очистке экстракта, восстановлении нитратов до нитритов на кадмиевой колонке с последующим фо­тометрическим измерением интенсивности окраски азосоединения, образующегося при взаимодействии нитритов с ароматическими ами­нами. Нижний предел определения нитратов – 0,03 мг NO3 в 1 см3 ко­лориметрируемого раствора.

Ионометрический метод определения нитратов. Сущность метода состоит в извлечении нитратов из анализируемого материала раствором алюмокалиевых квасцов с последующим измерением их концентрации в полученной вытяжке с помощью ИСЭ. Для ускорения анализа вместо вытяжки может быть использован сок анализируемой продукции, разбавленной раствором алюмокалиевых квасцов. При анализе капусты для разрушения примесей, мешающих определению нитратов, дополнительно проводят их окисление марганцовокислым калием.

Метод непригоден, если содержание хлоридов в анализируемом материале более чем в 25 раз превышает содержание нитратов при их концентрации до 50 мг/кг и в 50 раз – при более высоких.

Существует методика выполнения измерений концентраций нитратов в пищевых продуктах методом ионной хроматографии, основанная на извлечении нитратов из анализируемого продукта водой и анализе полученной водной вытяжки методом ионной хроматографии.

Для определения N-нитрозаминов используют два варианта флуориметрического метода и хемилюминесцентный метод.

Флуориметрический метод определения нитрозаминов. Метод определения N-нитрозаминов в пищевых продуктах и продовольственном сырье включает следующие стадии: выделение летучих N-нитрозаминов нитрозаминов путем перегонки с паром или в вакууме; экс­тракция хлористым метиленом нитрозаминов из водного дистиллята; концен­трация экстракта; денитрозирование нитрозаминов бромистым водородом в уксусной кислоте; алкилирование образовавшихся аминов 8-метокси-5-хинолинсульфонилазиридином (КАЗ), разделение и количественное определение образовавшихся флуоресцирующих 8-метокси-5[N-(2-N-диэтиламино)]хинолинсульфонамидных произ­водных (КАЭ-производные) в тонком слое силикагеля.

Идентификацию нитрозаминов осуществляют сравнением подвижности в тонком слое силикагеля флуоресцирующих КАЭ-производных из образца с подвижностью соответствующих стандартных производ­ных: диметиламина – КАЭ-ДМА, диэтиламина – КАЭ-ДЭА, ди­пропиламина – КАЭ-ДПА.

В основе полуколичествениого определения лежит визуальное сравнение интенсивности флуоресценции пятен КАЭ-производных из образца с интенсивностью флуоресценции пятен стандартных соединений.

Для количественного определения их извлекают из сорбента и измеряют величины флуоресценции КАЭ-производных с использованием флуориметра.

Хемилюминесцентный метод определения нитрозаминов (арбитражный). Метод идентификации и количественного определения нитрозаминов со­стоит в выделении летучих нитрозаминов путем перегонки с паром или в ва­кууме, экстракции хлористым метиленом нитрозаминов из водного дистилля­та, концентрировании экстракта, разделении смеси методом газо­жидкостной хроматографии и количественном определении немодифицированных нитрозаминов с помощью высокоселективного и высоко­чувствительного хемилюминесцентного (термоэнергетического) детектора ТЕА-502.

Идентификацию нитрозаминов осуществляют по времени удерживания в сравнении с параметрами удерживания стандартных нитрозаминов. Количе­ственное определение проводят методом абсолютной калибровки с систематическим контролем калибровочного коэффициента.

 

Контрольные вопросы:

1. Каковы источники поступления нитратов и нитритов в организм человека?

2. Каковы механизмы токсичности нитратов и нитритов для организма человека?

3. Какие соединения называют нитрозаминами и каковы источники поступления нитрозаминов в организм человека?

4. Как соотносятся значения ПДК нитратов в воде и продуктах питания с реально обнаруживаемыми количествами?

5. Характеризуйте продукты питания по содержанию и степени накопления нитратов?

6. Каковы пути снижения содержания нитратов в продуктах питания?

7. Какие методы используются для определения нитратов, нитритов и нитрозаминов?

 

 

§ 3.9. Пищевые добавки

 

Пищевые добавки – природные, идентичные природным или искусственные (синтетические) вещества, обычно неупотребляемые в качестве пищевого продукта, но которые преднамеренно вводят в пищевой продукт по технологическим соображениям на различных этапах производства, хранения, транспортировки с целью улучшения или облегчения производственного процесса или отельных операций, увеличения стойкости продукта к различным видам порчи, сохранения структуры и внешнего вида продукта или специального изменения его органолептических свойств. Следовательно, пищевые добавки – это вещества, соединения, которые сознательно вносят в пищевые продукты для выполнения определенных функций. Такие вещества, называемые также прямыми пищевыми добавками,не являются посторонними, как, например, различные контаминанты, «случайно» попавшие в пищу на различных этапах ее производства.

Существует принципиальное различие между пищевыми добавками и вспомогательными материалами, употребляемыми в ходе технологического процесса.

Вспомогательные материалы –любые вещества или материалы, которые, не являясь пищевыми ингредиентами, преднамеренно используются при переработке сырья и получении пищевой продукции с целью улучшения технологии. В готовых пищевых продуктах вспомогательные материалы либо отсутствуют, либо могут сохраняться в незначительных количествах в виде неудаляемых остатков.

Ряд пищевых добавок появляется в пище независимо от желания производителя – в процессе производства продукта или его упаковки. Человек ежегодно вместе с пищевыми продуктами получает от 0,2 до 1,0 мг бенз(а)пирена: за счет веществ из дыма при копчении; ксенобиотиков, появляющихся из упаковочных пластмасс.

История пищевых добавок (уксусная кислота, поваренная соль и др.) насчитывает несколько тысячелетий. Однако только в ХХ в., в его второй половине, им стали уделять особое внимание.

Пищевые добавки в наше время выступают как самые распространенные биологически активные ксенобиотики, вводимые в организм из внешней среды. При этом развитые страны испытывают наибольшее воздействие этого мощного химического потока. Так, в США, например, в качестве добавок используются 8000 различных веществ.

В настоящее время в Беларуси действуют Санитарные правила и нормы 13-10 РБ 2002 «Гигиенические требования к качеству и безопасноти пищевых добавок и их применению».

Пищевые добавки допускается применять только в том случае, если они даже при длительном использовании не угрожают здоровью человека. В то же время требования к оценке безопасности пищевых добавок заведомо ниже, чем к лекарствам.

Обычно пищевые добавки разделяют на несколько групп:

- вещества, регулирующие вкус продукта (ароматизаторы, вкусовые добавки, усилители вкуса, подслащивающие вещества, кислоты и регуляторы кислотности);

- вещества, улучшающие внешний вид продукта (красители, стабилизаторы цвета, отбеливатели); Красители заметно выделяются из пищевых добавок своими опасными свойствами. Среди красителей встречается много канцерогенов.

- вещества, регулирующие консистенцию и формирующие текстуру (загустители, гелеобразователи, стабилизаторы, эмульгаторы и др.);

- вещества, повышающие сохранность продуктов и увеличивающие сроки хранения (консерванты, антиоксиданты и др.).

В каждом классе пищевых добавок встречаются соединения, опасные для здоровья. Для пищевых добавок существуют ПДК, ДСП, ДСД, которые постоянно совершенствуются. Для некоторых натуральных пищевых добавок, не представляющих угрозу для здоровья даже в больших количествах, предельно допустимые концентрации в продуктах не устанавливаются. Количество их определяется технологией и вкусовыми качествами. К ним относят Е164 «шафран», Е160 «натуральные экстракты каротинов», Е260 «уксусную кислоту», Е290 «двуокись углерода».

Число пищевых добавок, применяемых в производстве пищевых продуктов в разных странах, достигает сегодня 500, не считая комбинированных добавок, отдельных пищевых веществ и ароматизаторов. В Европейском Союзе классифицировано около 300 пищевых добавок, для гармонизации использования которых Европейским Союзом разработана рациональная система цифровой кодификации пищевых добавок. Она включена в кодекс ВОЗ для пищевых продуктов как международная цифровая система кодификации пищевых добавок. Каждой пищевой добавке присвоен цифровой трех- или четырехзначный номер (в Европе с предшествующей ему буквой Е). Эти номера (коды) используются в сочетании с названиями функциональных классов, отражающих группу пищевых добавок по технологическим функциям (подклассам).

Букву Е специалисты отождествляют как со словом Европа, так и со словами essbar/edible, что в переводе на русский соответственно с немецкого или английского означает съедобный. Присвоение конкретному веществу статуса пищевой добавки и трехзначного идентификационного номера Е имеет четкое толкование, подразумевающее, что:

- данное вещество проверено на безопасность;

- вещество может быть применено в рамках его установленной безопасности технологической необходимости при условии, что применение этого вещества не введет потребителя в заблуждение относительно типа и состава пищевого продукта, в который оно внесено;

- для данного вещества установлены критерии чистоты, необходимые для достижения определенного уровня качества продуктов питания.

Следовательно, разрешенные пищевые добавки, имеющие идентификационный номер, обладают определенными свойствами.

После некоторых Е-номеров стоят строчные буквы, например: Е160а – каротины. В этих случаях речь идет о классификационном подразделении пищевой добавки. Строчные буквы являются неотъемлемой частью номера Е.

Наличие пищевых добавок в продуктах питания должно фиксироваться на этикетке, при этом пищевая добавка может обозначаться как индивидуальное вещество или как представитель функционального класса в сочетании с номером Е. Например, бензоат натрия или консервант Е211.

Однако наименование и доза (в числовом выражении) пищевой добавки, как правило, не выносится на этикетку, поскольку на ней не поместятся зачастую длинные и трудно читаемые обозначения веществ в составе добавок. Обычно на этикетке фигурирует индекс добавки. Классификация пищевых добавок (по основным группам) в ЕС и большинстве стран Европы в соответствии с назначением согласно предложенной системе цифровой кодификации выглядит следующим образом:

1. Красители (Е-100–Е-199);

2. Консерванты (Е-200–Е-299);

3. Антиоксиданты, регуляторы кислотности (Е-300–Е-391);

4. Стабилизаторы, эмульгаторы, загустители (E-400–E-481);

5. Разные (E500–E-585);

6. Усилители вкуса и аромата (Е-600–Е-699);

7. Глазирующие агенты, улучшители хлеба и муки, пеногасители и подсластители (Е-900–Е-999);

8. Ферментные препараты (E-1100–E-1105).

Многие пищевые добавки, включенные в этот список, имеют комплексные технологические функции, которые проявляются в зависимости от особенностей пищевой системы. Например, добавка Е339 (фосфаты натрия) может проявлять свойства регулятора кислотности, эмульгатора, стабилизатора, комплексообразователя и водоудерживающего агента.

Для свободного перемещения по территории сообщества продуктов питания с пищевыми добавками директивой ЕСопределен список пищевых добавок, которые разрешенны к применению в продуктах стран ЕС и могут быть экспортированы из одной страны сообщества в другую и ввезены на территорию любой страны ЕС из третьих стран (не членов ЕС). На упаковочных материалах такие добавки должны быть обозначены буквой E и далее соответствующий номер, согласно директиве ЕС, в которой они сгруппированы в несколько классов. Обозначения E700 – E899 не встречаются в настоящее время на упаковках пищевых продуктов, так как это запасные индексы. Химические названия пищевых добавок с индексом Е можно увидеть в специальных Приложениях.




Поделиться с друзьями:


Дата добавления: 2015-05-29; Просмотров: 1516; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.069 сек.