Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основной закон конвективного теплообмена




Обычно жидкие и газообразные теп­лоносители нагреваются или охлаждают­ся при соприкосновении с поверхностями твердых тел. Например, дымовые газы в печах отдают теплоту нагреваемым за­готовкам, а в паровых котлах — трубам, внутри которых греется или кипит вода; воздух в комнате греется от горячих при­боров отопления и т. д. Процесс тепло­обмена между поверхностью твердого те­ла и жидкостью называется теплоот­дачей, а поверхность тела, через кото­рую переносится теплота, — поверхно­стью теплообмена или теплоотдающей поверхностью.

Согласно закону Ньютона (1643— 1717) и Рихмана (1711 — 1753 гг.) тепло­вой поток в процессе теплоотдачи про­порционален площади поверхности теп­лообмена Fи разности температур по­верхности tc и жидкости tж:

Q = αF|tc-tж| (9.1)

В процессе теплоотдачи независимо от направления теплового потока Q (от стенки к жидкости или наоборот) значе­ние его принято считать положительным, поэтому разность tc-tж берут по абсо­лютной величине.

Коэффициент пропорциональности ее называется коэффициентом теп­лоотдачи; его единица измерения Вт/(м2. К)- Он характеризует интенсив­ность процесса теплоотдачи. Численное значение его равно тепловому потоку от единичной поверхности теплообмена при разности температур поверхности и жид­кости в 1 К

Коэффициент теплоотдачи обычно определяют экспериментально, измеряя тепловой поток Q и разность температур Δt = tc-tж в процессе теплоотдачи от поверхности известной площади F. Затем по формуле (9.1) рассчитывают α. При проектировании аппаратов (проведении тепловых расчетов) по этой формуле оп­ределяют одно из значений Q, F, ΔtПри этом а находят по результатам обобщения ранее проведенных экспери­ментов.

Строго говоря, выражение (9.1) справедливо лишь для дифференциально малого участка поверхности dF, т. е. δQ = αdF|tc-tж|

поскольку коэффициент теплоотдачи мо­жет быть не одинаковым в разных точках поверхности тела.

Для расчета полного потока теплоты от всей поверхности нужно проинтегри­ровать обе части уравнения (9.2) по по­верхности

Обычно температура поверхности по­стоянна tc = соnst, тогда Q = |tc-tж|

В расчетах используются понятия сред­него по поверхности коэффициента теп­лоотдачи:

Коэффициент теплоотдачи а зависит от физических свойств жидкости и ха­рактера ее движения. Различают естественное и вынужденное движение (конвекцию) жидкости. Вынужденное движение создается внеш­ним источником (насосом, вентилятором, ветром). Естественная конвекция возни­кает за счет теплового расширения жид­кости, нагретой около теплоотдающей поверхности (рис. 9.1) в самом процессе теплообмена. Она будет тем сильнее, чем больше разность температур Δt = tc-tж и температурный коэффициент объемно­го расширения: где υ = 1/ρ – удельный объем жидкости

Для газов, которые в большинстве случаев приближенно можно считать

идеальными, коэффициент объемного расширения можно получить, воспользо­вавшись уравнением Клапейрона (1.3): β = 1/T

Температурный коэффициент объем­ного расширения капельных жидкостей значительно меньше, чем газов. В не­большом диапазоне изменения темпера­тур, а значит, и удельных объемов про­изводную в уравнении (9.7) можно за­менить отношением конечных разностей параметров холодной (с индексом «ж») и прогретой (без индексов) жидкости:

Разность плотностей приводит к тому, что на любой единичный объем прогретой жид­кости будет действовать подъемная сила Fп, равная алгебраической сумме вытал­кивающей архимедовой силы А= -ρжg и силы тяжести G = ρg

Fп = A+G = -g(ρж – ρ) = -βρжg(t – tж)

Подъемная сила Fп перемещает про­гретую жидкость вверх без каких-либо побуждающих устройств (возникает естественная конвекция). Все рассужде­ния о возникновении естественной кон­векции справедливы и для случая охлаж­дения жидкости с той лишь разницей, что жидкость около холодной поверхно­сти будет двигаться вниз, поскольку ее плотность будет больше, чем вдали от поверхности.

Из-за вязкого трения течение жидко­сти около поверхности затормаживается, поэтому, несмотря на то, что наибольший прогрев жидкости, а соответственно и подъемная сила при естественной кон­векции будут около теплоотдающей по­верхности, скорость движения частиц жидкости, прилипших к самой поверхно­сти, равна нулю (см. рис. 9.1).

Сила вязкого трения зависит от ди­намического коэффициента вязкости μ, жидкости, измеряемого в Н . с/м2 (Па . с). В уравнениях теплоотдачи чаще исполь­зуют кинематический коэффициент вяз­кости ν = μ/ρ Оба эти коэффициента характеризуют физические свойства жидкости, их значения приводятся в справочниках.




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 636; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.