Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Защита поверхности металла покрытиями




Защита металлов от коррозии

Методы защиты металлов от коррозии можно разделить на три типа:

1. Защита поверхности металла покрытиями:

а) неметаллические покрытия,

б) металлические покрытия.

2. Электрохимические методы защиты поверхности:

а) протекторная защита,

б) электрозащита (катодная защита).

3. Использование ингибиторов коррозии.

 

Защитное действие заключается в том, что в гетерогенной системе разрывается контакт между металлом и окислителем.

Все защитные покрытия можно подразделить на:

а) неметаллические защитные покрытия, к которым относятся краски, эмали, лаки, полимерные пленки и другие полимерные материалы;

б) металлические защитные покрытия, которые подразделяются на:

анодные защитные покрытия и катодные защитные покрытия.

К анодным защитным металлическим покрытиям относят металлы, которые являются более активными металлами, чем защищаемый металл. Такие металлы имеют более низкое значение электродного потенциала окисления, чем защищаемый металл.

Пример 8. Подобрать металл для анодной защиты поверхности металла железа в среде «влажный воздух». Написать уравнение коррозии при нарушении целостности защитного покрытия.

Решение. Для железа анодными покрытиями могут быть металлы – цинк, алюминий, магний, титан.

Как правило, выбираются металлы, которые подвергаются процессу пассивации. Однако при нарушении защитного покрытия (железо покрыто цинком) в случае появления электролита возникает микрогальванический элемент, в котором цинк является анодом, а железо – катодом.

Электрохимическая схема возникшего гальванического элемента

(А) Zn / O2+H2O / Fe (К)


А 2 Zn – 2e = Zn2+ окисление

К 1 O2 + 2H2O + 4e = 4OH- восстановление

2Zn + O2 + 2H2O = 2Zn2+ + 4OH-

или в молекулярном виде

2Zn + O 2 + 2H2O = 2Zn(OH)2 .

При нарушении анодного защитного покрытия защищаемая железная конструкция не разрушается в результате электрохимической коррозии. Коррозия конструкции протекает значительно медленнее, чем без защитного покрытия.

К катодным защитным металлическим покрытиям относят металлы, которые являются менее активными металлами, чем защищаемый металл. Такие металлы имеют более высокое значение электродного потенциала окисления, чем защищаемый металл.

Пример 9. Подобрать металл для катодной защиты поверхности металла железа в среде «влажный воздух». Написать уравнение коррозии при нарушении целостности защитного покрытия.

Решение. Для железа катодными покрытиями могут быть металлы – медь, серебро, олово, никель.

Менее активный металл эффективно защищает металлическую конструкцию от коррозии до тех пор, пока не нарушена целостность защитного покрытия. Однако при нарушении защитного покрытия (железо покрыто оловом) в случае появления электролита возникает микрогальванический элемент, в котором железо является анодом, а олово – катодом.

Электрохимическая схема возникшего гальванического элемента

(А) Fe / O2+H2O / Sn (К)


А 2 Fe – 2e = Fe2+ окисление

К 1 O2 + 2H2O + 4e = 4ОН- восстановление

2Fe + O2 + 2H2O = 2Fe2+ + 4OH-

или в молекулярном виде:

2Fe + O 2 + 2H2O = 2Fe(OH)2 .

При нарушении катодного защитного покрытия защищаемая конструкция разрушается в результате электрохимической коррозии. Коррозия протекает значительно быстрее, чем без защитного покрытия.

 




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 1000; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.034 сек.