КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример (дробно-линейная функция)
Геометрический смысл модуля производной Лекция №10 Из определения производной , следовательно, (1). Очевидно, – это есть расстояние между точками Z и Z0, или что тоже – длина вектора . А – это есть расстояние между их образами f(Z) и f(Z0) или длина вектора f(Z) – f(Z0). Значит, отношение можно рассматривать как растяжение вектора с началом в точке Z0 и концом в точке Z при отображении W = f(Z). Поэтому, в силу равенства (1), модуль производной можно рассматривать как растяжение в точке при отображении W = f(Z). Очевидно, это растяжение, вообще говоря, не совпадает с отношением , но является его пределом, и это растяжение не зависит от выбора точки . Функция вида W = f(z) = (2) называется дробно-линейной функцией (здесь a, b, c, d – фиксированные комплексные числа, а z – комплексная переменная). Мы будем рассматривать случай, когда (3). Очевидно, в случае строки определителя пропорциональны. Пусть , и этот случай не интересен, так как вся плоскость переводится в одну точку. Очевидно, выполняется, по крайней мере, одно из условий: а) с = 0; б) с ≠ 0. а) Рассмотрим случай с = 0, так как , то обязательно a и d не равны нулю. Положим , , тогда отображение (2) запишется в виде , (4). Очевидно производная , поэтому отображение (4) конформно в любой точке плоскости (Z). При этом отображении угол поворота касательной к кривым постоянен во всех точках плоскости (Z) и равен . Растяжение также во всех точках будет фиксировано и будет равно . Очевидно, если , то , и . Следовательно, в этом случае отсутствует поворот и растяжение. Отображение осуществляет при этом сдвиг всей плоскости на вектор . Пусть теперь . Тогда отображение (4) можно переписать так , где . Отсюда видно, что и . Таким образом, в данном случае при отображении (4) векторы , выходящие из точки , растягиваются в раз и затем поворачиваются на угол . Следовательно, при этом отображении вся плоскость относительно точек растягивается в раз и затем поворачивается на угол . б) Пусть теперь с 0. Очевидно, , где , число . Нетрудно видеть, что производная конечна и отлична от нуля во всех точках , поэтому является конформным во всех точках . При этом отображении касательные к кривым поворачиваются на угол . Растяжение во всех точках будет равно . Из этих формул непосредственно видно, что поворот касательных к кривым будет одним и тем же в тех точках , где сохраняет постоянное значение. Очевидно, это будут лучи , исходящие из точек . Растяжение будет одним и тем же только в точках , где , то есть на окружностях с центром в точке .
Дата добавления: 2015-06-26; Просмотров: 353; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |