КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Доказательство. Пусть для степенного ряда (1) верхний предел (2) тогда:
Теорема Коши-Адамара. Пусть для степенного ряда (1) верхний предел (2) тогда: 1. Если , то ряд один абсолютно сходится во всей конечной плоскости (Z). 2. Если , то степенной ряд (1) сходится в точке Z = Z0 и расходится во всех точках . 3. Если , то степенной ряд (1) абсолютно сходится в любой точке Z круга и расходится в любой его точке Z круга . 1. Пусть , тогда в силу (2) будет также (). Поэтому для любой фиксированной точки Z будет , следовательно, по признаку Коши ряд (1) абсолютно сходится в любой точке Z. 2. Пусть теперь . Покажем, что ряд (1) расходится в любой точке . Легко видеть, что некоторая последовательность . Значит для любого и тем более Следовательно для ряда (1) в точке не выполняется необходимый признак сходимости ряда (общий член не стремится к нулю при n→∞), поэтому ряд один в этой точке расходится. Сходимость ряда (1) в точке Z = Z0 очевидна, т. к. в этой точке все члены ряда (1), начиная со 2, обращаются в нуль. 3. Пусть теперь 0 < Λ < +∞. Покажем, что ряд (1) абсолютно сходится в любой точке Z круга . Сходимость ряда (1) в точке Z = Z0 очевидна. Возьмем любое из круга . Очевидно, такое что, будет выполняться . Рассмотрим число . По определению верхнего предела существует число N = N(), такое, что при всех n > N будет выполняться неравенство . При этих номерах n > N будет . Следовательно, в силу признака Коши (непредельная форма), ряд (1) в точке Z будет абсолютно сходиться. Докажем теперь, что ряд (1) расходится в любой точке Z внешности круга . Очевидно, существует такое число , что будет выполняться равенство . По определению верхнего предела существует подпоследовательность , значит будет выполняться , , поэтому в точке Z для ряда (1) не выполняется необходимое условие сходимости. Ряд в этой точке расходится. Из теоремы Коши-Адамара вытекает. Что для любого степенного ряда (1) существует число , такое что, во всех числах Z круга |Z - Z0| < R ряд (1) абсолютно сходится, а во всех точках внешности этого круга |Z - Z0| > R ряд расходится. Такой круг |Z - Z0| < R называется кругом сходимости степенного ряда (1). Число R при этом называется радиусом сходимости степенного ряда. Очевидно, .
Радиус окружности можно вычислить по формулам , если эти пределы существуют. Из теоремы Коши-Адамара в частности вытекает первая теорема Абеля.
Дата добавления: 2015-06-26; Просмотров: 797; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |