КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Рассмотрим расчет параметров и характеристик модели множественной регрессии
Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, МНК. При его применении строится система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии. Для уравнения (22.1) система нормальных уравнений составит: (22.2) При нелинейной регрессии, приводимой к линейному виду, ее параметры также можно определить МНК с той лишь разницей, что он используется не к исходной информации, а к преобразованным данным. Ценность эконометрических моделей состоит в том, что они позволяют не только выявить связи и зависимости, выразить их на языке математики, дать экономическое истолкование параметрам, но и в том, что позволяют рассчитать ряд характеристик. Наиболее важными из них являются следующие: ü предельная эффективность показателя-фактора; ü коэффициент эластичности; ü изокванта; ü предельная норма заменяемости одного фактора другим; ü изоклинал; ü индексы корреляции и детерминации; ü стандартная ошибка и другие. Рассмотрим сущность и методику расчета каждого из перечисленных характеристик. Предельная эффективность показывает - на сколько абсолютных единиц измениться результативный показатель, если данный фактор увеличиться на одну абсолютную единицу, а остальные факторы останутся неизменными. Предельная эффективность представляет собой частную производную по показателю-фактору, т.е. , где i = 1,2,…,n. Коэффициент эластичности показывает - на сколько процентов измениться результативный показатель, если данный показатель-фактор измениться на один процент, а остальные факторы останутся неизменными. Формула для расчета коэффициента эластичности (Eхi) имеет вид: . (22.3) Например, для линейной (22.4) и степенной модели (22.5) предельная эффективность факторов х1 и х2 равна соответственно (23.6)
(23.7) а коэффициент эластичности:
(23.8)
Следует обратить внимание на следующие частные случаи: - в случае линейной зависимости предельная эффективность фактора равна коэффициенту регрессии, т.е. - в случае зависимости степенного вида коэффициент эластичности показателя-фактора равен коэффициенту регрессии, т.е. , i=1,2,…,n. Изокванта, предельная норма заменяемости одного фактора другим, изоклинал - характеристики, рассчитываемые только для многофакторных моделей. Изоквантой называют множество сочетаний значений показателей-факторов, при которых результативный показатель принимает одно и тоже значение. Чтобы найти изокванту надо: - принять Y за константу (Y= const); - выразить один из факторов через остальные. Для каждой эконометрической модели можно построить «семейство» изоквант. Предельная норма заменяемости одного фактора другим позволяет- определить, сколько единиц одного фактора требуется для замены одной единицы другого фактора. Чтобы рассчитать предельную норму заменяемости надо: - найти изокванту; - определить частную производную одного фактора по другому, т.е. ¶Хl/¶Хk, где l≠k, l и kÎi = 1,2,…,n. Изоклинал – это множество сочетаний значений показателей-факторов, при которых предельная норма заменяемости принимает одно и тоже значение. Чтобы найти изоклинал, надо: - найти предельную норму заменяемости; - принять предельную норму заменяемости за константу
- выразить один из факторов через остальные.
21. Соизмеримые показатели тесноты связи
Дата добавления: 2015-06-04; Просмотров: 532; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |