Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Собственная электропроводность полупроводников




Рассмотрим строение полупроводникового материала, получившего наиболее широкое распространение в современной электронике, – кремния (Si). В кристалле этого полупроводника атомы располагаются в узлах кристаллической решетки, а электроны наружной электронной оболочки образуют устойчивые ковалентные связи, когда каждая пара валентных электронов принадлежит одновременно двум соседним атомам и образует связывающую эти атомы силу. Так как у элементов IV группы на наружной электронной оболочке располагаются по четыре валентных электрона, то в идеальном кристалле полупроводника все ковалентные связи заполнены, и все электроны прочно связаны со своими атомами (рис. 1.5).

При температуре абсолютного нуля (T = 0 K) все энергетические состояния внутренних зон и валентная зона занята электронами полностью, а зона проводимости совершенно пуста. Поэтому в этих условиях кристалл полупроводника является практически диэлектриком.

При температуре T > 0 К в результате увеличения амплитуды тепловых колебаний атомов в узлах кристаллической решетки дополнительной энергии, поглощенной каким-либо электроном, может оказаться достаточно для разрыва ковалентной связи и перехода в зону проводимости, где электрон становится свободным носителем электрического заряда (рис. 1.6).

Электроны хаотически движутся внутри кристаллической решетки и представляют собой, так называемый электронный газ. Электроны при своем движении сталкиваются с колеблющимися в узлах кристаллической решетки атомами, а в промежутках между столкновениями они движутся прямолинейно и равномерно.

Одновременно с этим у того атома полупроводника, от которого отделился электрон, возникает незаполненный энергетический уровень в валентной зоне, называемый дыркой. Дырка представляет собой единичный положительный электрический заряд и может перемещаться по всему объему полупроводника под действием электрических полей, по законам диффузии в результате разности концентраций носителей заряда в различных зонах полупроводника, а также участвовать в тепловом движении.

Таким образом, в идеальном кристалле полупроводника при нагревании могут образовываться пары носителей электрических зарядов «электрон – дырка», которые обуславливают появление собственной электрической проводимости полупроводника.

Процесс образования пары «электрон – дырка» называют генерацией свободных носителей заряда. После своего образования пара «электрон – дырка» существует в течение некоторого времени, называемого временем жизни носителей электрического заряда.

В течение этого промежутка времени носители участвуют в тепловом движении, взаимодействуют с электрическими и магнитными полями как единичные электрические заряды, перемещаются под действием градиента концентрации, а затем рекомбинируют, т. е. электрон восстанавливает ковалентную связь. При рекомбинации электрона и дырки происходит высвобождение энергии. В зависимости от того, как расходуется эта энергия, рекомбинацию можно разделить на два вида: излучательную и безызлучательную.

Излучательной является рекомбинация, при которой энергия, освобождающаяся при переходе электрона на более низкий энергетический уровень, излучается в виде кванта света – фотона.

При безызлучательной рекомбинации избыточная энергия передается кристаллической решетке полупроводника, т.е. избыточная энергия идет на образование фононов – квантов тепловой энергии.

Следует отметить, что генерация пар носителей «электрон – дырка» и появление собственной электропроводности полупроводника может происходить не только под действием тепловой энергии, но и при любом другом способе энергетического воздействия на полупроводник – квантами лучистой энергии, ионизирующим излучением и т.д.

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 931; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.