Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнение Шредингера. До сих пор мы просто заботились о том, как бы записать состояния, которые бы учитывали, что электрон может находить­ся в пространстве где угодно




До сих пор мы просто заботились о том, как бы записать состояния, которые бы учитывали, что электрон может находить­ся в пространстве где угодно. Теперь же следует позаботиться о включении в наше описание физики того, что может произойти в тех или иных обстоятельствах. Как и прежде, надо подумать о том, как состояния будут меняться со временем. Если у нас есть состояние |y>, которое несколько позже переходит в дру­гое состояние |y>, то положение в любой момент мы сможем описать, сделав волновую функцию (т. е. попросту амплитуду < r |y>) функцией не только координат, но и времени. Частицу в данных условиях можно будет тогда описывать, задавая меняющуюся во времени волновую функцию y (r, t) = y (х, у, z, t). Эта меняющаяся во времени волновая функция описывает эво­люцию последовательных состояний, которая происходит с тече­нием времени. Это так называемое «координатное представле­ние»; оно дает проекции состояния |y> на базисные состояния | r > и не всегда может считаться самым удобным, но мы с него

и начнем.

В гл. 6 мы описали на языке гамильтониана Нij., как состоя­ния меняются во времени. Мы видели, что временная вариация различных амплитуд дается матричным уравнением

Это уравнение говорит, что изменение во времени каждой из амплитуд Сi пропорционально сумме всех прочих амплитуд Сj

с коэффициентами Нij.

Как должно выглядеть (14.49) при континууме базисных состояний | x >? Вспомним сперва, что (14.49) можно также запи­сать в виде

Теперь ясно, что делать. Для x -представления следует писать

Сумма по базисным состояниям | j > заменяется интегралом по х'. Поскольку < х | Н^ | х' >должна быть какой-то функцией от x и х ', запишем ее как Н (х, х'), что соответствует Н if в (14.49). Тогда (14.50) это то же самое, что

где

Согласно (14.51), быстрота изменения y в точке х зависела бы от значений y во всех других точках х '; множитель Н(х, х') — это амплитуда (в единицу времени) того, что электрон перепры­гнет из х' в x. Оказывается, однако, что в природе эта амплитуда всюду, кроме точек х', очень близких к х, равна нулю. Это озна­чает, как мы видели на примере цепочки атомов в начале главы [см. (14.12)], что правая часть (14.51) может быть полностью выражена только через y и ее производные по z в точке х.

Для частицы, которая свободно движется в пространстве, не подвергаясь действию каких-либо сил и возмущений, пра­вильный физический закон таков:

Откуда это получается? Это невозможно вывести из чего-либо нам уже известного. Это рождено в голове Шредингера, это вы­думано им в битве за понимание экспериментальных наблюдений реального мира. Может быть, какой-то ключ к тому, почему так должно быть, вам дадут размышления по поводу нашего вывода уравнения (14.12), которое проистекло из рассмотрения распро­странения электрона в кристалле.

Конечно, от свободных частиц проку мало. Что будет, если к частице приложить силы? Что ж, если действующая на частицу сила может быть описана с помощью скалярного потенциала V (х)(что означает, что речь идет не о магнитных силах, а об электрических) и если мы ограничимся низкими энергиями, чтобы иметь право пренебрегать теми сложностями, которые возникают при релятивистском движении, то гамильтониан, который укладывается в реальный мир, таков:

Опять-таки некоторый ключ к происхождению этого уравнения вы получите, если вернетесь к движению электрона в кристалле и посмотрите, как надо изменить уравнения, если энергия электрона медленно меняется от атома к атому, как если бы к кристаллу было приложено электрическое поле. Тогда член Е 0 в (14.7) будет медленно меняться в зависимости от места и будет соответствовать новому слагаемому, появившемуся в (14.52). [Вас может удивить, отчего мы сразу перешли от (14.51) к (14.52), а не дали правильного выражения для амплитуды Н(х, х')=<х | Н^|х' >. Да потому, что Н (х, х') можно написать только с помощью необычных алгебраических функций, а инте­грал в правой части (14.51) выражается через привычные вещи. Если вам это в самом деле интересно, то вот смотрите: Н (х, х') можно записать так:

где d'' означает вторую производную 6-функции. Эту довольно странную функцию можно заменить чуть более удобным и пол­ностью ей равнозначным алгебраическим выражением

Мы не будем пользоваться этими формулами, а прямо будем рабо­тать с (14.52).]

Если теперь взять выражение (14.52) и подставить в (14.50) вместо интеграла, то для y(х) =<х |y> получится дифферен­циальное уравнение

Совершенно очевидно, что надлежит поставить вместо (14.53),

если нас интересует трехмерное движение. Надо только d 2 /dx 2

заменить на

а V (х)заменить на V (x, у, z). Для электрона, движущегося в поле с потенциалом V (х, у, z), амплитуда y (х, у, z) удовлетво­ряет дифференциальному уравнению

Называется оно уравнением Шредингера и было первым извест­ным квантовомеханическим уравнением. Его написал Шредин­гер, прежде чем было открыто любое другое описанное в этом томе уравнение.

Хотя мы здесь пришли к нему совсем иным путем, но появле­ние этого уравнения в 1926 г., когда Шредингер впервые его написал, явилось великим историческим моментом, отметившим рождение квантовомеханического описания материи. Многие годы внутренняя атомная структура вещества была великой тайной. Никто не был в состоянии понять, что скрепляет вещест­во, отчего существует химическая связь, и, особенно, как атомам удается быть устойчивыми. Хотя Бор и смог дать описание внут­реннего движения электрона в атоме водорода, которое, каза­лось бы, объясняло наблюдаемый спектр лучей, испускаемых этим атомом, но причина, отчего электроны движутся именно так, оставалась тайной. Шредингер, открыв истинные уравне­ния движения электронов в масштабах атома, снабдил нас тео­рией, которая позволила рассчитать атомные явления количест­венно, точно и подробно. В принципе его уравнение способно объяснить все атомные явления, кроме тех, которые связаны с магнетизмом и теорией относительности. Оно объясняет уровни энергии атома и все, что касается химической связи. Но, ко­нечно, это объяснение только в принципе. Математика вскоре становится столь сложной, что точно решить удается только простейшие задачи. Одни лишь атомы водорода и гелия были рассчитаны с высокой точностью. Однако путем различных при­ближений, порой весьма сомнительных, можно многое понять и в более сложных атомах и в химической связи молекул. Некоторые из этих приближений были показаны в предыдущих главах.

Уравнение Шредингера в том виде, в каком мы его записали, не учитывает каких-либо магнитных эффектов. Их, правда, можно приближенно принять во внимание, добавив в уравнение еще другие члены. Но, как мы убедились раньше, магнетизм — это эффект существенно релятивистский, так что правильное опи­сание движения электрона в произвольном электромагнитном поле можно обсуждать только в рамках надлежащего релятиви­стского уравнения. Правильное релятивистское уравнение для движения электрона было открыто Дираком через год после того, как Шредингер придумал свое уравнение; оно имеет со­вершенно другой вид. Мы его не успеем здесь изучить.

Прежде чем перейти к рассмотрению некоторых следствий из уравнения Шредингера, хотелось бы продемонстрировать, как оно выглядит для системы многих частиц. Мы не будем им пользоваться, а просто хотим показать вам его, чтобы подчерк­нуть, что волновая функция y не просто обычная волна в про­странстве, а функция многих переменных. Если частиц много, уравнение превращается в

Потенциальная функция V — это то, что классически соответст­вует полной потенциальной энергии всех частиц. Если на ча­стицы не действуют внешние силы, то функция V есть попросту электростатическая энергия взаимодействия всех частиц. Иначе говоря, если заряд i -й частицы равен Ziqe, то функция V просто равна




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 336; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.046 сек.