Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сложение моментов количества движения




Когда мы изучали сверхтонкую структуру атома водорода в гл. 10 (вып. 8), нам пришлось рассчитывать внутренние состоя­ния системы, составленной из двух частиц — электрона и протона — со спинами 1/2. Мы нашли, что четверка возможных спиновых состояний такой системы может быть разбита на две группы — на тройку состояний с одной энергией, которая во внешнем поле выглядела как частица со спином 1, и на одно ос­тавшееся состояние, которое вело себя как частица со спином 0. Иначе говоря, объединяя две частицы со спином 1/2, можно образовать систему, «полный спин» которой равен либо единице, либо нулю. В этом параграфе мы хотим рассмотреть на более общем уровне спиновые состояния системы, составленной из двух частиц с произвольными спинами. Это другая важная проблема, связанная с моментами количества движения квантовомеханической системы.

Перепишем сперва результаты гл. 10 для атома водорода в форме, которая позволит распространить их на более общий случай. Мы начали с двух частиц, которые теперь обозначим так: частица а (электрон) и частица b (протон). Спин частицы а был равен ja (=1/2), a z-компонента момента количества движе­ния mа могла принимать одно из нескольких значений (на са­мом деле два, а именно mа =+1/2 или mа=- 1 / 2). Точно так же спиновое состояние частицы b описывалось ее спином jb и z-компонентой момента количества движения mb. Из всего этого можно было составить несколько комбинаций спиновых состояний двух частиц. Например, из частицы а с mа = 1/2 и частицы b с mb =-1/2 можно было образовать состояние | а, +1/2; b, -1/2>. Вообще, объединенные состояния образовы­вали систему, у которой «спин системы», или «полный спин», или «полный момент количества движения» J мог быть равен либо единице, либо нулю, а z-компонента момента количества движения М могла равняться +1, 0 или -1 при J =1 и нулю при J =0. На этом новом языке формулы (10.41) и (10.42) можно переписать так, как показано в табл. 16.3.

Левый столбец таблицы описывает составное состояние через его полный момент количества движения J и z -компоненту М.

Таблица 16.3 • СОСТАВЛЕНИЕ МОМЕНТОВ КОЛИЧЕСТВА ДВИЖЕНИЯ ДВУХ ЧАСТИЦ СО СПИНОМ 1/2,

Правый столбец показывает, как составляются эти состояния из значений т двух частиц а и b.

Мы хотим обобщить этот результат на состояния, составлен­ные из двух объектов а и b с произвольными спинами jа и jb. Начнем с разбора примера, когда jа =1/2 и jb =1, а именно с атома дейтерия, в котором частица а — это электрон е, а части­ца b — ядро, т. е. дейтрон d. Тогда ja = je= 1 / 2. Дейтрон обра­зован из одного протона и одного нейтрона в состоянии с пол­ным спином 1, так что jb=jd= 1. Мы хотим рассмотреть сверхтонкие состояния дейтерия, как мы сделали это для водо­рода. Поскольку у дейтрона может быть три состояния, mb = md =+1, 0, -1, а у электрона — два, mа = mе =+1/2, -1/2, то всего имеется шесть возможных состояний, а именно (используется обозначение

| е, me; d, md >):

Обратите внимание, что мы разверстали состояния согласно значениям суммы me и md в порядке ее убывания.

Спросим теперь: что случится с этими состояниями, если спроецировать их в другую систему координат? Если эту новую систему просто повернуть вокруг оси z на угол j, то состояние | е, me; d, md >умножается на

(Состояние можно считать произведением | е, mе >| d, md >, и каждый вектор состояния независимо привнесет свой собст­венный экспоненциальный множитель.) Множитель (16.43) имеет форму еiMj, поэтому z-компонента момента количества движения у состояния | е, mе; d, md >окажется равной

M=me+md. (16.44)

Иначе говоря, z-компонента полного момента количества движения есть сумма z-компонент моментов количества движе­ния отдельных частей.

Значит, в перечне состояний (16.42) верхнее состояние имеет М =+3/2, Два следующих М =+1/2, затем два М =-1/2и последнее состояние М=- 3/2. Мы сразу же видим, что одной из возможностей для спина J объединенного состояния (для полного момента количества движения) должно быть 3/2, это потребует четырех состояний с М= +3/2, +1/2, -1/2 и - 3/2. На М=+ 3/2 есть только один кандидат, и мы сразу видим, что

Но что является состоянием | J =3/2, М =+1/2>? Кандидатов здесь два, они стоят во второй строчке (16.42), и всякая их ли­нейная комбинация тоже даст М= +1/2. Значит, в общем случае можно ожидать, что

где a и b — два числа. Ихименуют коэффициенты Клебша — Гордона. Найти их и будет нашей очередной задачей.

И мы их легко найдем, если просто вспомним, что дейтрон состоит из нейтрона и протона, и в явном виде распишем со­стояния дейтрона, пользуясь правилами табл. 16.3. Если это проделать, то перечисленные в (16.42) состояния будут выгля­деть так, как показано в табл. 16.4.

Пользуясь состояниями из этой таблицы, мы хотим образо­вать четверку состояний с J =3/2. Но ответ нам уже известен, потому что в табл. 16.1 уже стоят состояния со спином 3/2, образованные из трех частиц со спином 1/2. Первое состояние в табл. 16.1 имеет | J =3/2, М =+3/2>, это |+++>, а в наших нынешних обозначениях это | e, +1/2; n, + 1/2; p, +1/2>, или первое состояние из табл. 16.4. Но это состояние — то же самое, что первое по списку в (16.42), так что наше выражение (16.45) подтверждается. Вторая строчка в табл. 16.1 утверждает, если воспользоваться нашими теперешними обозначениями, что

То, что стоит в правой части, можно, очевидно, составить из двух членов во второй строчке табл. 16.4, взяв Ö2/3 от пер­вого члена и Ö1/3от второго. Иначе говоря, (16.47) эквива­лентно

Таблица 16.4 • СОСТОЯНИЯ МОМЕНТА КОЛИЧЕСТВА ДВИЖЕНИЯ АТОМА ДЕЙТЕРИЯ

Мы нашли два наших первых коэффициента Клебша — Гор­дона a, и b [см. (16.46)]:

Повторяя ту же процедуру, найдем

а также, конечно,

Это и есть правила составления из спина 1 и спина 1/2 полного спина J =3/2. Мы свели (16.45) и (16.50) в табл. 16.5.

Таблица 16.5 • СОСТОЯНИЯ С J =3/2 АТОМА ДЕЙТЕРИЯ

Но у нас пока есть только четыре состояния, а у системы, которую мы рассматриваем, их шесть.

Из двух состояний во второй строчке (16.42) мы для об­разования | J =3/2, М =+1/2> составили только одну линей­ную комбинацию. Есть и другая линейная комбинация, орто­гональная к ней, у нее тоже М =+1/2 и она имеет вид

Точно так же из двух состояний в третьей строке (16.42) можно скомбинировать два взаимно-ортогональных состояния, каждое с М =- 1/2. То, которое ортогонально к (16.50), имеет вид

это и есть два оставшихся состояния. У них M=me+md= ±1/2; эти состояния должны соответствовать J =1/2. Итак, мы имеем

Можно убедиться, что эти два состояния действительно ведут себя как состояния объекта со спином 1/2; для этого надо выразить дейтронную часть через нейтронные и протонные со­стояния (при помощи табл. 16.3). Первое состояние в (16.53) превратится в

(16.55) а это можно переписать так:

Посмотрите теперь на выражение в первых фигурных скобках и подумайте, что получается при объединении е и р. Вместе они образуют состояние с нулевым спином (см. нижнюю строку в табл. 16.3) и не дают вклада в момент количества движения. Остался только нейтрон, значит, вся первая фигурная скобка (16.56) будет вести себя при поворотах как нейтрон, а именно как состояние с J= 1/2, M=+ 1/2.

Повторяя те же рассуждения, убедимся, что во вторых фигурных скобках (16.56) электрон и нейтрон объединяются, чтобы образовать нулевой момент количества движения, и ос­тается только вклад протона — с mp =+1/2. Скобка опять ведет себя как объект с J =+1/2, М =+1/2. Значит, и все выра­жение (16.56) преобразуется как | J =+1/2, М =+1/2>, чего мы и хотели. Состояние М= -1/2,отвечающее формуле (16.56), можно расписать так (заменив везде, где нужно, +1/2 на -1/2):

Вы легко проверите, что это совпадает со второй строчкой в (16.54), как и полагается, если каждая скобка представляет собой одно из двух состояний системы со спином 1/2. Значит, наши результаты подтвердились. Дейтрон и электрон могут существовать в шести спиновых состояниях, четыре из которых ведут себя как состояния объекта со спином 3/2 (табл. 16.5), а два — как объект со спином J/2 (16.54).

Результаты табл. 16.5 и уравнения (16.54) мы получили, вос­пользовавшись тем, что дейтрон состоит из нейтрона и протона. Правильность уравнений не зависит от этого особого обстоятель­ства. Для любого объекта со спином 1, объединяемого с объектом со спином 1/2, законы объединения (и коэффициенты) одни и те же. Совокупность уравнений в табл. 16.5 означает, что если система координат поворачивается, скажем, вокруг оси у, так что состояния частицы со спином 1 / 2и частицы со спином 1 изме­няются согласно табл. 16.1 и 16.2, то линейные комбинации по правую сторону знака равенства будут изменяться так, как это свойственно объекту со спином 3/2. При таком же повороте со­стояния (16.54) будут меняться как состояния объекта со спи­ном 1/2. Результаты зависят только от свойств относительно пово­ротов (т. е. от спиновых состояний) двух исходных частиц, но отнюдь не от происхождения их моментов количества движения. Мы этим происхождением воспользовались лишь для вывода формул, выбрав частный случай, в котором одна из составных частей сама состоит из двух частиц со спином 1/2 в симметричном состоянии. Все наши результаты мы свели в табл. 16.6, изменив индексы е и d на а и b, чтобы подчеркнуть их общность.

Таблица 16.6 • ОБЪЕДИНЕНИЕ ЧАСТИЦЫ СО СПИНОМ 1/2(ja=1/2) С ЧАСТИЦЕЙ СО СПИНОМ 1 (jb =1)

Поставим теперь себе общую задачу найти состояния, кото­рые можно образовать, объединяя два объекта с произвольными спинами. Скажем, у одного спин ja (так что его z -компонента mа пробегает 2 jа +1 значений от - ja до + ja, а у другого jb (с z-компонентой mb, пробегающей значения от - jb до+ jb).

Объединенные состояния суть | а, mа; b, mb >, их всего (2 ja +1)(2 jb +1). Какие же состояния с полным спином / мы обнаружим?

Полная z-компонента М момента количества движения рав­няется mа+mb, и все состояния можно перечислить, опираясь на величину М [как в (16.42)]. Наибольшое М является единст­венным; оно отвечает значениям ma=ja и mb=jb и равно по­просту ja+jb. Это означает, что наибольший полный спин J также равен сумме jа+jb:

J = М макс= ja+jb.

Следующему значению М, меньшему чем М макс на единицу, будут соответствовать два состояния (либо mа, либо mb меньше своих максимальных значений на единицу). Из них должно быть образовано одно состояние, принадлежащее совокупности с J=ja+jb, и останется еще одно, которое будет принадлежать новой совокупности с J=ja+jb- 1. Следующее значение М (третье сверху) можно составить тремя путями (из ma=ja 2, mb = jb, из ma=ja- 1, mb=jb- 1 и из ma=ja, mb=jb -2). Два из них принадлежат к уже начавшим составляться груп­пам; третье говорит нам, что надо включить в рассмотрение и со­стояния с J=ja+jb -2. Такие рассуждения будут продол­жаться до тех пор, пока уже нельзя будет, меняя то одно, то дру­гое т, получать новые состояния.

Пусть из jа и jb меньшим является jb (а если они одинаковы, возьмите любое из них); тогда понадобятся только 2 jb значений полного спина J, идущих единичными шагами от jа+jb вниз к jа-jb. Иначе говоря, когда объединяются два объекта со спинами jа и jb, то полный момент количества движения J их системы может равняться одному из значений:

(Написав | ja-jb |вместо ja-jb, мы можем избежать напо­минания о том, что ja³jb.)

Для каждого из этих значений J имеется 2J+1 состояний с различными значениями М; М меняется от + J до - J. Каждое из них образовано из линейных комбинаций исходных состояний | а, mа; b, mb> с соответствующими коэффициентами — коэффициентами Клебша — Гордона для каждого отдельного члена. Можно считать, что эти коэффициенты дают «количест­во» состояния | ja, ma; jb, mb>, проявляющегося в состоянии

Таблица 16.7 • ОБЪЕДИНЕНИЕ ДВУХ ЧАСТИЦ СО СПИНОМ 1 (ja =1, jb =1)

I /, My. Так что каждый из коэффициентов Клебша — Гордона обладает, если угодно, шестью индексами, указывающими его положение в формулах типа приведенных в табл. 16.3 и 16.6. Иначе говоря, обозначая, скажем, эти коэффициенты С (J, М; ja, ma; jb, mb), можно выразить равенство во второй строчке табл. 16.6 так:

Мы не будем здесь подсчитывать коэффициенты для других частных случаев. Но вы обнаружите такие таблицы во мно­гих книжках. Попробуйте сами подсчитать другой случай, например объединение двух объектов со спином 1. Мы же про­сто привели в табл. 16.7 окончательный результат.

Эти законы объединения моментов количества движения имеют очень важное значение в физике частиц, их приложениям поистине нет конца. К сожалению, у нас нет сейчас больше вре­мени на другие примеры.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 447; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.029 сек.