Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Их роль в патологии




Свободные радикалы и

Хорошо известно, что в органических молекулах (включая те, из которых состоит наш организм) электроны на внешней электронной оболочке располагаются парами: одна пара на каждой орбитали. Свободные радикалы отличаются от обычных молекул тем, что у них на внешней электронной оболочке имеется неспаренный (одиночный) электрон. Это делает радикалы химически активными, поскольку радикал стремится вернуть себе недостающий электрон, отняв его от окружающих молекул и тем самым их повреждая.

Неспаренный электрон в радикалах принято обозначать точкой. Например, радикал гидроксила обозначают как НО•, радикал перекиси водорода как НОО•, радикал супероксида как •ОО-или O2•. Ниже даны формулы трех радикалов этилового спирта:

 

СН3СН2О•; СН3CНОH; СН3СН2О•

 

Методы изучения свободных радикалов. Радикалы обладают высокой реакционной способностью и изучать их обычными химическими методами невозможно; стандартные процедуры вроде хроматографии или центрифугирования совершенно бесполезны.

Биохимические анализы позволяют, правда, определятьконечные продуктыреакций, в которых предполагается участие радикалов, но всегда остаются вопросы: а действительно ли радикалы участвовали в процессе и какие именно? Важную роль при решении таких вопросов играет так называемыйингибиторный анализ. Классическим примером может служить применение фермента супероксиддисмутазы (СОД). Этот фермент катализирует реакцию взаимодействия (дисмутации) двух супероксидных радикалов с образованием перекиси водорода и молекулярного кислорода. Если добавление СОД тормозит изучаемый процесс, значит, для его протекания необходим супероксид-радикал и остается выяснить, в какой именно реакции этот радикал участвует (рис. 6).

Ингибиторный анализ используется и для изучения реакций с участием других радикалов. Так, для выяснения участия в каком-нибудь процессе реакций цепного окисления липидов (см. ниже) используют жирорастворимые «ловушки» липидных радикалов, которые «ведут» цепи окисления (рис. 7). К числу таких ловушек относятся токоферол (витамин Е) и некоторые синтетические соединения, например трет-бутилгидрокситолуол (ионол). Водорастворимые радикалы эффективно «перехватываются» аскорбиновой или мочевой кислотой. Для «улавливания» радикалов гидроксила (НО•) используют маннитол или бензойную кислоту, а иногда - этанол. Однако далеко не всегда ловушки специфичны:многие из них реагируют не только с радикалами, но и с достаточно активными молекулами.

Прямым методом изучения свободных радикалов можно считать метод электронного парамагнитного резонанса (ЭПР), позволяющий обнаруживать молекулярные частицы и ионы металлов, обладающие неспаренным электроном. По амплитуде и форме сигналов (спектров) ЭПР можно определять концентрацию частиц с неспаренными электронами и судить об их строении.

К эффективным методам изучения реакций, идущих с участием радикалов, можно отнести метод хемилюминесценции (ХЛ). В основе его лежит то обстоятельство, что при взаимодействии радикалов друг с другом выделяется много энергии, которая может испускаться в виде фотонов (квантов света). Интенсивность такого свечения (ХЛ) пропорциональна скорости реакций, в которой участвуют радикалы, и, следовательно, показывает изменение их концентрации в ходе изучаемого процесса.

В биологических системах скорости образования радикалов кислорода или липидных радикалов в мембранах не так уж велики, зато очень велики скорости исчезновения этих радикалов, поэтому концентрация радикалов в каждый данный момент времени (так называемая стационарная концентрация) обычно очень мала. Выход из положения заключается в использовании так называемых спиновых ловушек в методе ЭПР и активаторов свечения. В первом случае к изучаемому образцу (например, к суспензии клеток, гомогенату ткани или раствору, где протекают реакции с участием свободных радикалов) добавляют особые вещества - спиновые ловушки. Например, в качестве ловушки для радикалов гидроксила (•OH) используют фенилбутилнитрон (ФБН).

При взаимодействии ловушки с радикалом происходит присоединение радикала к ловушке с образованием нового, стабильного радикала, получившего название спинового аддукта (от английского слова add - добавлять, складывать). Сигналы ЭПР спиновых аддуктов разных радикалов слегка различаются по форме. Это позволяет идентифицировать радикалы, образующиеся в изучаемой системе. Для улавливания других радикалов (скажем, супероксида) используют другие ловушки.

 

3.1.7. Свободнорадикальное (перекисное) окисление липидов

Все радикалы, образующиеся в организме человека, можно разделить на природные и чужеродные. В свою очередь природные радикалы можно разделить на первичные, вторичные и третичные (рис. 8).

Первичные радикалы - те радикалы, образование которых осуществляется при участии определенных ферментных систем. Прежде всего к ним относятся радикалы (семихиноны), образующиеся в реакциях таких переносчиков электронов, как коэнзим Q (обозначим радикал как Q•) и флавопротеины. Два других радикала - супероксид (•ОО-) и монооксид азота (•NO) также выполняют полезные для организма функции.

Из первичного радикала - супероксида, а также в результате других реакций в организме образуются весьма активные молекулярные соединения: перекись водорода, гипохлорит и гидроперекиси липидов. Под действием ионов металлов переменной валентности, в первую очередь Fe2+, из этих веществ образуются вторичные радикалы (радикал гидроксила и радикалы липидов), которые оказывают разрушительное действие на клеточные структуры.

Для защиты от повреждающего действия вторичных радикалов в организме используется большая группа веществ, называемых антиоксидантами, к числу которых принадлежат ловушки, или пepexватчики свободных радикалов. Примером последних служат альфа-токоферол, тироксин, восстановленный убихинон (QН2) и женские стероидные гормоны. Реагируя с липидными радикалами, эти вещества сами превращаются в радикалы антиоксидантов, которые можно рассматривать как третичные радикалы.

Наряду с этими радикалами, постоянно образующимися в том или ином количестве в клетках и тканях организма человека, разрушительное действие могут оказывать радикалы, появляющиеся при таких воздействиях, как ионизирующее излучение, ультрафиолетовое облучение или даже освещение интенсивным видимым светом, например светом лазера. Такие радикалы можно назвать чужеродными. К ним принадлежат также радикалы, образующиеся из попавших в организм посторонних соединений, ксенобиотиков, многие из которых оказывают токсическое действие именно благодаря свободным радикалам, образующимся при метаболизме этих соединений.

Радикалы кислорода. Клетки-фагоциты (к которым относятся гранулоциты и моноциты крови и тканевые клетки - макрофаги), соприкасаясь с поверхностью клеток, бактерий, начинают энергично выделять супероксид: радикалы, образующиеся в результате переноса электрона от НАДФН-оксидазного ферментного комплекса, встроенного в мембрану клеток и внутриклеточных везикул-фагосом, на растворенный молекулярный кислород

НАДФН + 2О=О ®

® НАДФ++ 2 (•ОО -) + Н+

(супероксид анион-радикал)

При этом каждая молекула НАДФН, окисляясь, отдает два электрона в цепь переноса электронов, а каждый из этих электронов присоединяется к молекуле кислорода, в результате чего образуется супероксид анион-радикал (рис. 9).

Супероксидные радикалы, как мы увидим позже, могут нанести вред как самим фагоцитам, так и другим клеткам крови и, разумеется, микробам, вызвавшим активацию макрофага. Естественно, что все эти клетки стараются избавиться от супероксид-радикалов, для чего они вырабатывают ферменты, называемые супероксиддисмутазами. Различаясь по строению активного центра и структуре полипептидной цепи, все СОД катализируют одну и ту же реакцию дисмутации супероксидного радикала:

супероксиддисмутаза

•ОО - + •ОО - + 2Н+®

® О2+ НООН (перекись водорода)

При этом супероксид превращается в кислород и перекись водорода. Судьба последней может быть разной (рис. 10).

В норме фагоциты используют перекись водорода для синтеза гипохлорита, выделяя специальный фермент - миелопероксидазу (МП). Миелопероксидаза катализирует реакцию

миелопероксидаза

Н2О2+ Cl - ® Н2О + ClО -(гипохлорит)

Гипохлорит разрушает стенку бактериальной клетки и тем самым убивает бактерии. Перекись водорода диффундирует в клетки, но там разрушается в результате активности ферментов каталазы и глутатионпероксидазы (GSH-пероксидазы), которые катализируют соответственно такие реакции:

каталаза




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 854; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.