КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Круговая диаграмма Мора
Экстремальные свойства главных напряжений.
Возьмем в теле произвольную точку А (х, у, z). Через эту точку можно провести бесконечное множество площадок. Очевидно, что на одной из площадок нормальное напряжение достигнет наибольшего для данной точки значения, а на другой касательное напряжение примет свое максимальное значение. Пусть для точки А известно положение главных осей напряженного состояния. Если их принять за систему координат (рис.23), то в наклонной площадке с вектором нормали n (l, m, n) возникают нормальные и касательные напряжения Р(s, t). Определим эти напряжения и исследуем их экстремальные свойства.
Рис.23
Нормальные напряжения в любой наклонной площадке выражаются основной квадратичной формой (33). Запишем её с учетом того, что в качестве системы координат приняты главные оси:
sn = s1×l2 + s2×m2 + s3×n2 (38)
Найдем квадрат полного напряжения на наклонной площадке как сумму квадратов его проекций, выражения для которых были найдены ранее (32):
Р2 = Pх2+ Pу2 + Pz2 = s12×l2 + s22×m2 + s32×n2 (39)
Также полное напряжение на наклонной площадке можно представить как сумму нормального и касательного напряжений (17). Таким образом, мы имеем систему трех уравнений с тремя неизвестными - l2, m2, n2:
s = s1×l2 + s2×m2 + s3×n2 s2 + t2 = s12×l2 + s22×m2 + s32×n2 (40) 1 = l2 + m2 + n2
Умножим каждое уравнение на произвольные множители a, b, c и сложим, сгруппировав при этом слагаемые по направляющим косинусам
а×s + b×(s2 + t2) + с = = l2×(а×s1 + b×s12 + с) + m 2×(а×s2 + b×s22 + с) + n 2×(а×s3 + b×s32 + с) (41)
Для определения величины l2 подберем коэффициенты a, b, c таким образом, чтобы вторая и третья скобки в правой части уравнения (41) обнулились:
а×s2 + b×s22 + с = 0, а×s3 + b×s32 + с = 0, получаем
b = 1, а = -(s2 +s3), с = s2×s3.
Подставляя полученные коэффициенты в уравнение (41), находим величину l2:
l2= . (42)
Аналогично находим квадраты двух других направляющих косинусов
m 2 = , (43) n 2 = .
В уравнениях (42) и (43) дроби должны быть больше нуля, так как в левых частях стоят квадраты величин. Проанализируем знаменатели дробей на основе неравенства s1 ³ s2 ³ s3:
³ 0, £ 0, (44) ³ 0.
На основе неравенств (44) можно сделать вывод о знаке числителя:
³ 0, £ 0, (45) ³ 0.
Сделав ряд математических преобразований, можно показать, что неравенства (45) представляют собой области, ограниченные окружностями. Рассмотрим третье неравенство и представим его решение графически (рис.24):
(46)
Представим решение системы (45) графически (рис.25). Эта диаграмма называется круговой диаграммой Мора. Круговая диаграмма позволяет установить экстремальные свойства нормальных и касательных напряжений.
Рис.24
s1 - максимальное нормальное напряжение, которое может возникнуть в точке на любой наклонной площадке; s3 - минимальное нормальное напряжение, которое может возникнуть в точке на любой наклонной площадке; tmax = - максимальное касательное напряжение, которое может возникнуть в точке на любой наклонной площадке, действует на площадках наклоненных к главным на угол 45°.
Рис.25
Дата добавления: 2015-06-30; Просмотров: 2405; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |