Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Круговая диаграмма Мора




Экстремальные свойства главных напряжений.

 

Возьмем в теле произвольную точку А (х, у, z). Через эту точку можно провести бесконечное множество площадок. Очевидно, что на одной из площадок нормальное напряжение достигнет наибольшего для данной точки значения, а на другой касательное напряжение примет свое максимальное значение.

Пусть для точки А известно положение главных осей напряженного состояния. Если их принять за систему координат (рис.23), то в наклонной площадке с вектором нормали n (l, m, n) возникают нормальные и касательные напряжения Р(s, t). Определим эти напряжения и исследуем их экстремальные свойства.

 
 

 

 


Рис.23

 

Нормальные напряжения в любой наклонной площадке выражаются основной квадратичной формой (33). Запишем её с учетом того, что в качестве системы координат приняты главные оси:

 

sn = s1×l2 + s2×m2 + s3×n2 (38)

 

Найдем квадрат полного напряжения на наклонной площадке как сумму квадратов его проекций, выражения для которых были найдены ранее (32):

 

Р2 = Pх2+ Pу2 + Pz2 = s12×l2 + s22×m2 + s32×n2 (39)

 

Также полное напряжение на наклонной площадке можно представить как сумму нормального и касательного напряжений (17).

Таким образом, мы имеем систему трех уравнений с тремя неизвестными - l2, m2, n2:

 

s = s1×l2 + s2×m2 + s3×n2

s2 + t2 = s12×l2 + s22×m2 + s32×n2 (40)

1 = l2 + m2 + n2

 

Умножим каждое уравнение на произвольные множители a, b, c и сложим, сгруппировав при этом слагаемые по направляющим косинусам

 

а×s + b×(s2 + t2) + с =

= l2×(а×s1 + b×s12 + с) + m 2×(а×s2 + b×s22 + с) + n 2×(а×s3 + b×s32 + с) (41)

 

Для определения величины l2 подберем коэффициенты a, b, c таким образом, чтобы вторая и третья скобки в правой части уравнения (41) обнулились:

 

а×s2 + b×s22 + с = 0,

а×s3 + b×s32 + с = 0,

получаем

 

b = 1, а = -(s2 +s3), с = s2×s3.

 

Подставляя полученные коэффициенты в уравнение (41), находим величину l2:

 

l2= . (42)

 

Аналогично находим квадраты двух других направляющих косинусов

 

m 2 = ,

(43)

n 2 = .

 

В уравнениях (42) и (43) дроби должны быть больше нуля, так как в левых частях стоят квадраты величин. Проанализируем знаменатели дробей на основе неравенства s1 ³ s2 ³ s3:

 

³ 0,

£ 0, (44)

³ 0.

 

На основе неравенств (44) можно сделать вывод о знаке числителя:

 

 

 
 


³ 0,

£ 0, (45)

³ 0.

 

Сделав ряд математических преобразований, можно показать, что неравенства (45) представляют собой области, ограниченные окружностями. Рассмотрим третье неравенство и представим его решение графически (рис.24):

 

(46)

 

Представим решение системы (45) графически (рис.25). Эта диаграмма называется круговой диаграммой Мора. Круговая диаграмма позволяет установить экстремальные свойства нормальных и касательных напряжений.

 

 

 
 

 


Рис.24

 

s1 - максимальное нормальное напряжение, которое может возникнуть в точке на любой наклонной площадке;

s3 - минимальное нормальное напряжение, которое может возникнуть в точке на любой наклонной площадке;

tmax = - максимальное касательное напряжение, которое может возникнуть в точке на любой наклонной площадке, действует на площадках наклоненных к главным на угол 45°.

 

 

 
 

 

 


Рис.25




Поделиться с друзьями:


Дата добавления: 2015-06-30; Просмотров: 2405; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.