Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Моменты инерции сечения




Рис. 3.3

В дополнение к статическим мо­ментам в системе координат x 0 y (рис. 3.1)рассмотрим три интегральных выражения:

(3.7)

Первые два интегральных выраже­ния называются осевыми моментами инерции относительно осей x и y, а третье - центробежным моментом инерции сечения относительно осей x, y.

Для сечений, состоящих из n- числа областей (рис. 3.3), фор­мулы (3.7) по аналогии с (3.6) будут иметь вид:

Рассмотрим, как изменяются моменты инерции сечения при параллельном переносе координатных осей x и y (см. рис. 3.2). Преобразуя формулы (3.7) с учетом выражения (3.2), получим:

(3.8)

Если предположить, что оси x 1 и y 1 (см. рис. 3.2) являются цен­тральными, тогда и выражения (3.8) упрощаются и принимают вид:

(3.9)

Рис. 3.4

Определим осевые моменты инерции прямоугольника относительно осей x и y, проходящих через его центр тяжести (рис. 3.4). В качестве элементарной пло­щадки dF возьмем полоску шириной b и высотой dy (рис. 3.4). Тогда будем иметь:

Аналогичным образом можно установить, что .

Для систем, рассматриваемых в полярной системе координат (рис. 3.5, а), вводится также полярный момент инерции:

.

где r - радиус-вектор точки тела в заданной полярной системе ко­ординат.

Рис. 3.5

Вычислим полярный момент инерции круга радиуса R. На рис. 3.5, a показана элементарная площадка, очерченная двумя ра­диусами и двумя концентрическими поверхностями, площадью

dF = r d r d j.

Интегрирование по площади заменим двойным интегрировани­ем:

.

Hайдем зависимость между полярным и осевыми моментами инерции для круга. Из геометрии видно (рис. 3.5, б), что

r2 = x 2 + y 2,

следовательно,

.

Так как оси x и y для круга равнозначны, то Ix = Iy = .

Полярный момент инерции кольца может быть найден как разность моментов инерции двух кругов: наружного (радиусом R) и внутреннего (радиусом r):

.




Поделиться с друзьями:


Дата добавления: 2015-06-30; Просмотров: 324; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.