КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Моменты инерции сечения
В дополнение к статическим моментам в системе координат x 0 y (рис. 3.1)рассмотрим три интегральных выражения: (3.7) Первые два интегральных выражения называются осевыми моментами инерции относительно осей x и y, а третье - центробежным моментом инерции сечения относительно осей x, y. Для сечений, состоящих из n- числа областей (рис. 3.3), формулы (3.7) по аналогии с (3.6) будут иметь вид: Рассмотрим, как изменяются моменты инерции сечения при параллельном переносе координатных осей x и y (см. рис. 3.2). Преобразуя формулы (3.7) с учетом выражения (3.2), получим: (3.8) Если предположить, что оси x 1 и y 1 (см. рис. 3.2) являются центральными, тогда и выражения (3.8) упрощаются и принимают вид: (3.9)
Определим осевые моменты инерции прямоугольника относительно осей x и y, проходящих через его центр тяжести (рис. 3.4). В качестве элементарной площадки dF возьмем полоску шириной b и высотой dy (рис. 3.4). Тогда будем иметь: Аналогичным образом можно установить, что . Для систем, рассматриваемых в полярной системе координат (рис. 3.5, а), вводится также полярный момент инерции: . где r - радиус-вектор точки тела в заданной полярной системе координат. Рис. 3.5 Вычислим полярный момент инерции круга радиуса R. На рис. 3.5, a показана элементарная площадка, очерченная двумя радиусами и двумя концентрическими поверхностями, площадью dF = r d r d j. Интегрирование по площади заменим двойным интегрированием: . Hайдем зависимость между полярным и осевыми моментами инерции для круга. Из геометрии видно (рис. 3.5, б), что r2 = x 2 + y 2, следовательно, . Так как оси x и y для круга равнозначны, то Ix = Iy = . Полярный момент инерции кольца может быть найден как разность моментов инерции двух кругов: наружного (радиусом R) и внутреннего (радиусом r): .
Дата добавления: 2015-06-30; Просмотров: 324; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |