Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

КРУЧЕНИЕ. 4.1. Кручение бруса с круглым поперечным сечением




4.1. Кручение бруса с круглым поперечным
сечением

Здесь под кручением понимается такой вид нагружения, при котором в поперечных сечениях бруса возникает только крутящий момент. Прочие силовые факторы, т.е. Nz, Qx, Qy, Mx, My равны нулю.

Для крутящего момента, независимо от формы поперечного се­чения бруса, принято следующее правило знаков. Если наблюда­тель смотрит на поперечное сечение со стороны внешней нормали и видит момент Mz направленным по часовой стрелке, то момент считается положительным. При противоположном направлении моменту приписывается отрицательный знак.

При расчете бруса на кручение (вала) требуется решить две ос­новные задачи. Во-первых, необходимо определить напряжения, возникающие в брусе, и, во-вторых, надо найти угловые перемеще­ния сечений бруса в зависимости от величин внешних моментов.

Наиболее просто можно получить решение для вала с круглым поперечным сечением (рис. 4.1 а). Механизм деформирования бруса с круглым поперечным сечением можно представить в виде. Предполагая, что каждое поперечное сечение бруса в результате действия внешних моментов поворачивается в своей плоскости на некоторый угол как жесткое целое. Данное предположение, зало­женное в основу теории кручения, носит название гипотезы пло­ских сечений.

Рис. 4.1

Для построения эпюры крутящих моментов Mz применим тра­диционный метод сечений - на расстоянии z от начала координат рассечем брус на две части и правую отбросим (рис. 4.1, б). Для оставшейся части бруса, изображенной на рис. 4.1, б, составляя уравнение равенства нулю суммы крутящих моментов S Mz = 0, получим:

Mz = M. (4.1)

Поскольку сечение было выбрано произвольно, то можно сде­лать вывод, что уравнение (4.1) верно для любого сечения вала -крутящий момент Mz в данном случае постоянен по всей длине бруса.

Далее двумя поперечными сечениями, как это показано на рис. 4.1, а, из состава бруса выделим элемент длиной dz, а из него свою очередь двумя цилиндрическими поверхностями с радиусами r и r + d r выделим элементарное кольцо, показанное на рис. 4.1, в. В результате кручения правое торцевое сечение кольца повернется на угол d j. При этом образующая цилиндра АВ повернется на угол g и займет положение АВ ¢. Дуга ¢ равна с одной стороны, r d j, а с другой стороны - g dz. Следовательно,

. (4.2)

Если разрезать образовавшуюся фигуру по образующей и раз­вернуть (рис. 4.1, г), то можно видеть, что угол g представляет со­бой не что иное, как угол сдвига данной цилиндрической поверх­ности под действием касательных напряжений t, вызванных дейст­вием крутящего момента. Обозначая

, (4.3)

где Q - относительный угол закручивания. Этот угол представляет собой угол взаимного поворота двух сечений, отнесенный к рас­стоянию между ними. Величина Q аналогична относительному уд­линению при простом растяжении или сжатии стержня.

Из совместного рассмотрения (4.2) и (4.3) и после некоторых преобразований, получим:

g = r Q. (4.4)

Подставляя выражение (4.4) в выражение закона Гука для сдвига (2.23), в данном случае выражение касательных напряжений принимает следующий вид:

t = G Q r, (4.5)

где t - касательные напряжения в поперечном сечении бруса. Пар­ные им напряжения возникают в продольных плоскостях - в осе­вых сечениях. Величину крутящего момента Mz можно определить через t с помощью следующих рассуждений. Момент относительно оси z от дей­ствия касательных напряжений t на элементарной площадке dF равен (рис. 4.2):

dM = t r dF.

 

Рис. 4.2

Проинтегрировав это выражение по площади поперечного сечения вала, получим:

. (4.6)

Из совместного рассмотрения (4.5) и (4.6) получим:

. (4.7)

Откуда

. (4.8)

Величина G I r называется жесткостью бруса при кручении.

Из (4.8), с учетом (4.3), интегрируя полученное выражение по параметру z, получим:

. (4.9)

Если крутящий момент Mz и жесткость G I r по длине бруса пос­тоянны, то из (4.9) получим:

, (4.10)

где j (0) - угол закручивания сечения в начале системы отсчета.

Для определения выражения напряжений, возвращаясь к формуле (4.5) и исключая из него q, согласно (4.8), получим:

t (r)= . (4.11)

Величина называется полярным моментом сопротивления поперечного сечения бруса в форме сплошного круга радиусом R. Определяется эта величина из следующих соображений:

(4.12)

Если же в брусе имеется внутренняя центральная полость ра­диусом r = , то для кольца

, (4.13)

где с = .

4.2. Кручение бруса с некруглым
поперечным сечением

Определение напряжений в брусе с некруглым поперечным се­чением представляет собой сложную задачу, которая не может быть решена методами сопротивления материалов. Причина заключается в том, что для некруглого поперечного сечения упрощающая гипо­теза плоских сечений, оказывается неприемлимой. В данном случае поперечные сечения существенно искривляются, в результате чего заметно меняется картина распределения напряжений.

Таким образом, при определении углов сдвига, в данном слу­чае, необходимо учитывать не только взаимный поворот сечений, но и деформации сечений в своей плоскости, связанная с искрив­лением сечений.

Задача резко усложняется тем, что для некруглого сечения, на­пряжения должны определяться как функции уже не одного неза­висимого переменного r, а двух - x и y.

Отметим некоторые особенности законов распределения напря­жений в поперечных сече­ниях некруглой формы. Ес­ли поперечное сечение име­ет внешние углы, то в них касательные напряжения должны обращаться в нуль. Если наружная поверхность бруса при кручении свобод­на, то касательные напряже­ния в поперечном сечении, направленные по нормали к контуру также будут равны нулю.

 

Рис. 4.3

На рис. 4.3 показана, по­лученная методом теории упругости, эпюра касатель­ных напряжений для бруса прямоугольного сечения. В углах, как видно, напряже­ния равны нулю, а наиболь­шие их значения возникают по серединам больших сторон:

в точке А t A = tmax = , (4.14)

где WК = b b 3 - аналог полярного момента сопротивления попереч­ного сечения прямоугольного бруса;

в точке В t B = h tmax , (4.15)

здесь необходимо учесть, что b - малая сторона прямоугольника.

Значения угла закручивания определяется по формуле:

, (4.16)

где IK = a b 4 - аналог полярного момента инерции поперечного сечения бруса.

Коэффициенты a, b и h зависят от отношения сторон m = h / b, и их значения приведены в табл. 3.

Таблица 3

m   1,5 2,0 3,0 6,0  
a 0,141 0,294 0,457 0,790 1,789 3,123
b 0,208 0,346 0,493 0,801 1,789 3,123
h 1,000 0,859 0,795 0,753 0,743 0,742

Геометрические характеристикинаиболее представительных форм сечений обобщены в табл. 4.




Поделиться с друзьями:


Дата добавления: 2015-06-30; Просмотров: 522; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.