Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Два вида истин




Математические факты

Краус придерживается совершенно иной теории относительно математики.

Краус: Математические истины не являются истинами, принимаемыми по
соглашению.,

Бриди: Тогда что делает их истинами?

Краус: Они истинны благодаря фактам.

Бриди: Что это за факты?

Краус: Математические факты, конечно. Допустим, я утверждаю, что все жеребцы относятся к мужскому полу. Как ты сказал, это утверждение будет тривиально истинным, истинным по соглашению. Но предположим теперь, я утверждаю, что все жеребцы имеют уши. Ведь это не будет истиной по соглашению?

Бриди: Нет. В мире могут найтись один или два жеребца, лишенные ушей.

Краус: Да, такое может быть. Поэтому если мое утверждение о том, что все жеребцы имеют уши, истинно, то оно истинно благодаря факту. Во внешнем мире существует факт, делающий мое утверждение истинным. Все жеребцы действительно имеют уши. Правильно?

Бриди: Да.

Краус: Я полагаю, это верно и для наших математических утверждений. Реальность содержит астрономические, географические, физичес-


кие и химические факты. В нее входят также и математические факты, такие, как тот факт, что 12 х 12 = 144. Вот эти внешние математические факты и делают истинными наши математические утверждения.

Краус и Бриди согласны относительно того, что, по сути дела, имеются два вида истин. Некоторые истины, например, та истина, что все жеребцы относятся к мужскому полу, «тривиально» истинны — истинны по соглашению. Другие истины, например, та, что все жеребцы имеют уши (если это истина), являются таковыми благодаря фактам.

Если истинно в силу соглашения, что все жеребцы относятся к мужскому полу, то нам не нужно идти и проверять всех жеребцов — относятся они к мужскому полу или нет Как обстоят дела в действительности, в данном случае не важно. Не имеет значения, какие факты существуют в мире: истина по соглашению останется истиной в любом случае. Она является «тривиальной» истиной.

С другой стороны, утверждение, истинное благодаря фактам, не является «тривиально» истинным. Такое утверждение рискует оказаться ложным, ибо мир может быть не таким, каким оно его описывает. Как говорит Краус, может случиться так, что не все жеребцы имеют уши. Для того чтобы узнать истинно ли нетривиальное утверждение, мы должны исследовать, таковы ли в действительности факты, о которых оно говорит: нужно пойти и посмотреть на всех жеребцов.

Бриди полагает, что математические утверждения истинны благодаря конвенции. Как и утверждение о том, что все жеребцы относятся к мужскому полу, они истинны благодаря нам самим. С другой стороны, Краус считает, что истинность математических утверждений определяется независимыми математическими фактами. Такова позиция математического реалиста.

Какая из этих двух точек зрения правильна?





Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 323; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.