Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Коэффициент детерминации (D)




Парный линейный коэффициент корреляции Бравэ-Пирсона (r).

Парный линейный коэффициент корреляции Бравэ-Пирсона вычисляется в том случае, когда между показателями исследуемых выборок (Х i и У i) существует линейная связь.

Если Х и У независимые случайные величины, то коэффициент корреляции равен 0. Заметим, что обратное утверждение неверно. Если r = 0, то между изучаемыми признаками нет линейной корреляционной зависимости, но это условие не исключает существования какого-либо другого вида корреляционной зависимости (параболической, показательной и др.)

Одна из формул для расчета коэффициента корреляции Бравэ-Пирсона:

где Xi, Yi - показатели первой и второй выборок соответственно;

- средние арифметические значения первой и второй выборок соответственно;

- стандартные отклонения первой и второй выборок соответственно;

n - объем каждой выборки.

Абсолютная величина коэффициента корреляции не превосходит единицы: < 1.

Коэффициент корреляции характеризует степень зависимости, или тесноту (силу) зависимости между Х и У, чем больше , т. е. чем ближе он к 1, тем сильнее (теснее) связь между изучаемыми признаками, а чем ближе он к 0, тем слабее.

Принято считать, если:

· коэффициент корреляции равен 1, то между исследуемыми признаками наблюдается функциональная связь;

· изменяется от ±0,9 до ± 0,7 - сильная статистическая связь;

· изменяется от ±0,69 до ±0,5 - средняя статистическая связь;

· изменяется от ± 0,49 до ±0,2 - слабая статистическая связь;

· коэффициент корреляции равен нулю - то между изучаемыми признаками нет линейной корреляционной зависимости.

Таким образом, коэффициент корреляции Бравэ-Пирсона r используется только при наличии линейной взаимосвязи между исследуемыми признаками. Существует несколько видов коэффициентов корреляции: парный линейный коэффициент корреляции Бравэ - Пирсона r, ранговый коэффициент корреляции Спирмэна r, тетрахорический коэффициент сопряженности Т, коэффициент множественной корреляции r xyz, коэффициент частной корреляции r xyz.

После вычисления любого из перечисленных выше коэффициентов корреляции, необходимо рассчитать его достоверность с использованием критерия Стьюдента.

В некоторых случаях тесноту связи случайных величин характеризуют коэффициентом детерминации D, равным:

.

Коэффициент детерминации показывает, какой процент взаимосвязи результатов двух выборок объясняется их взаимовлиянием.

Остальная часть (100 - D)% объясняется влиянием других неучтённых факторов.

 

 




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 794; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.