КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Превращения в стали при охлаждении
Превращения в стали при нагреве Нагрев стали при термической обработке используют для получения аустенита. Структура доэвтектоидной стали при нагреве ее до нижней критической точки при охлаждении (Ас1) состоит из зерен перлита и феррита. В точке Ас1 происходит превращение перлита в мелкозернистый аустенит. Образовавшийся аустенит неоднороден даже в объеме одного зерна. В тех местах, где раньше были пластинки цементита, содержание углерода значительно больше, чем в тех местах, где находились пластинки феррита. Для выравнивания химического состава и получения однородного аустенита доэвтектоидную сталь нагревают немного выше верхней критической точки Ас3 и выдерживают некоторое время при этой температуре для завершения диффузионных процессов. По окончании процесса превращения перлита в аустенит образуется большое количество мелких аустенитных зерен. Эти зерна называют начальными зернами аустенита. Дальнейший нагрев стали или увеличение выдержки приводят к росту аустенитного зерна. Зерно, полученное в стали в результате той или иной термической обработки, называют действительным зерном. Но склонность к росту аустенитных зерен с повышением температуры нагрева различна. Стали, раскисленные в процессе плавки кремнием и марганцем, обладают большой склонностью к непрерывному росту зерен аустенита при повышении температуры. Такие стали называют наследственно крупнозернистыми. К ним относят кипящие стали. Стали, раскисляемые в процессе выплавки дополнительно алюминием и в особенности легированные титаном или ванадием, мало склонны к росту зерна аустенита при нагреве до 950— 1000°С. Такие стали называют наследственно мелкозернистыми. К ним относят спокойные стали. От размера действительного зерна зависят механические свойства стали, главным образом ударная вязкость. Она значительно понижается с увеличением размера зерна. Размер действительного зерна стали зависит от размера зерна аустенита. Размер наследственного зерна оказывает влияние на технологические свойства стали. Если сталь наследственно мелкозернистая, то ее можно нагревать до более высокой температуры. Горячую обработку давлением — прокатку, ковку, объемную штамповку наследственно мелкозернистой стали — начинают и оканчивают при более высокой температуре, не опасаясь получения крупнозернистой структуры. Для определения размера наследственного (аустенитного) зерна применяют различные методы.
Аустенит является устойчивым только при температуре выше 727°С. При охлаждении стали, предварительно нагретой до аустенитного состояния, аустенит становится неустойчивым — начинается его превращение. Такое превращение может начаться только при некотором переохлаждении аустенита. В случае использования эвтектоидной углеродистой стали аустенит превратится в перлит, т. е. в механическую смесь феррита и цементита. При этом чем ниже температура превращения, тем больше переохлаждение и тем быстрее будет происходить превращение аустенита в перлит. Это превращение сопровождается диффузионным перераспределением углерода, и чем ниже температура переохлаждения, тем медленнее протекает процесс диффузии, что в свою очередь замедляет превращение аустенита в перлит. Противоположное действие обоих факторов (переохлаждения и диффузии) приводит к тому, что вначале с увеличением переохлаждения скорость превращения возрастает, а затем убывает. Процесс превращения аустенита в перлит экспериментально проводят при постоянной температуре, т. е. в изотермических условиях. Для этого образцы из стали нагревают до температуры, при которой она состоит из однородного аустенита, а затем быстро переносят в термостаты с заданной температурой. Превращение аустенита при постоянной температуре обобщается и изображается наглядно в виде диаграммы изотермического превращения (рис. 7).
Эта диаграмма строится на основе исследований при постоянных температурах (700, 650, 550°С и т. д.). По горизонтальной оси диаграммы наносят время в логарифмической шкале: 1, 10, 100, 1000, 10 000 и 100 000°С. По вертикальной оси откладывают температуру. Далее на диаграмме проводят жирные С-образные линии, отвечающие полученным экспериментальным путем точкам изотермического превращения аустенита. На диаграмме изотермического превращения в зависимости от степени переохлаждения различают три температурные области превращения: перлитную, бейнитную и мартенситную. Мартенситное превращение в отличие от перлитного имеет бездиффузионный характер. Мартенсит является основной структурой закаленной стали. Он имеет высокую твердость, зависящую от содержания углерода в стали. Чем больше содержится углерода в мартенсите, тем выше твердость стали.
Дата добавления: 2015-06-27; Просмотров: 1163; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |