КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Расчет коэффициента ассоциации
Расчет коэффициента конкордации
Таблица 10
Рассмотрим пример вычисления коэффициента ассоциации при изучении связи между такими критериями пригодности, как 1 и IV группы, и критериями успешности обучения – лучшие и отчисленные: где а, b, с, d– численности альтернативных признаков (практически неограничены). В корреляционной решетке (табл. 10) приведены исходные данные для расчетов (х– группа; у – успешность обучения). Подставляя в формулу соответствующие значения из таблицы, находим величину коэффициента ассоциации (ra = 0,65), который выражается в долях от 0 до 1. Достоверность оценивается по его отношению к средней ошибке, определяемой по формуле откуда t= 16,25 Достоверность rа может быть определена также и по специальным таблицам [52]. При изучении корреляционной зависимости между вариационными рядами с отсутствием линейной зависимости более правомерным является вычисление корреляционного отношения, которое измеряет состояние любых, в том числе и нелинейных, связей между признаками. В отличие от коэффициента корреляции, изучающего двустороннюю связь между x и у, корреляционное отношение (η) показывает только зависимость изменений второго (у) признака от изменений первого (х), или наоборот Корреляционное отношение – величина относительная, положительная и принимает значение от 0 до 1. Показатели корреляционного отношения обычно не равны между собой – ηy/x ≠ ηx/y Они определяются по следующим формулам: и , где – среднее квадратическое отклонение частотных или групповых средних величин (ух), то есть частная дисперсия; – общая дисперсия совокупности.
Эти формулы можно выразить и в другом виде: ; ;
По приведенным формулам удобно определять коэффициенты корреляционного отношения для небольших выборок, а при наличии большого числа наблюдений необходимо предварительно весь материал группировать в вариационные ряды и вносить в корреляционную таблицу. Рассмотрим вычисление корреляционного отношения на выборке из 10 наблюдений (табл. 11) Сначала находим коэффициент корреляционного отношения полетов у по грубым ошибкам х, то есть η /х, для чего ранжируем выборку по x (значения x расположены в возрастающем порядке сверху вниз). Затем определяем вспомогательные величины для вычисления корреляционного отношения по x и подставляем в формулу, откуда ηγ/χ = 0,99.
Таблица11
Дата добавления: 2015-07-02; Просмотров: 386; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |