КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Постановка задачи. Статистический алгоритм разделения субъектов на классы профессиональной пригодности
Статистический алгоритм разделения субъектов на классы профессиональной пригодности Пусть информация о психологических особенностях человека содержится в я-мерном векторе ν (ν1, ν2,..., νn). Каждое из νi (i= 1, 2,..., n) – число, полученное при помощи той или другой методики (среди них могут быть определенным образом закодированы и качественные характеристики чело века). В дальнейшем компоненты ν будут называться признаками. Выбор признаков обычно производится с учетом психологических требований к профессиональной пригодности. Предлагаемый алгоритм позволяет отбросить те из используемых признаков, которые оказываются неинформативными для данной конкретной задачи определения профессиональной пригодности. Предполагается, что группам лиц, с одной стороны, пригодных (группа «А»), а с другой стороны, непригодных (группа «В») к рассматриваемой деятельности соответствуют два класса я-мерных векторов {νΑ} и {vB}, которые могут сильно пересекаться, но статистически различны. В дальнейшем всегда будем считать, что {vA} – класс векторов, характеризующих пригодных к данной деятельности субъектов. С математической точки зрения задача определения профессиональной пригодности заключается в отнесении с определенной вероятностью ошибки вектора (ν1, ν2,..., νη) κ одному из двух классов – «А» или «В». Имеется много различных методов решения этой задачи. Во всех методах необходим этап «обучения»: статистический анализ уже имеющегося опыта. Для целей определения профессиональной пригодности они не получили большого распространения – одни из-за крайней громоздкости и сложности применения даже при помощи вычислительных машин, другие потому, что оказались не очень эффективными. Успех классификации по многим признакам в задачах диагностики зависит от информативности этих признаков и способа интеграции информации. Этот способ интеграции должен быть: 1) простым в вычислительном отношении и доступным при использовании; 2) малочувствительным к отсутствию какого-либо признака; 3) в какой-то мере инвариантным к сдвигу распределений признаков (последнее существенно в силу необходимости считаться с разными методическими условиями получения одного и того же признака). Этим требованиям в значительной степени удовлетворяет алгоритм, основанный на модификации последовательного статистического анализа отношения вероятностей [58]. Он был предложен для диагностических целей и оказался весьма эффективным при дифференциальной диагностике ряда заболеваний по таким признакам, на основании которых постановка диагноза оказывалась затрудненной даже для опытных специалистов [63]. Для целей определения профессиональной пригодности этот алгоритм должен быть еще более эффективным, так как психологические признаки ν1, ν2,..., νη являются слабо статистически зависимыми, а при этих условиях последовательный анализ отношения вероятностей является оптимальной процедурой для классификации на два класса [64].
Дата добавления: 2015-07-02; Просмотров: 342; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |