Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Параболическая регрессия




Рассмотрим построение уравнения регрессии вида .

Составление системы нормальных уравнений для нахождения коэффициентов параболической регрессии осуществляется аналогично составлению нормальных уравнений линейной регрессии.

После преобразований получаем:

.

Решая систему нормальных уравнений, получают коэффициенты уравнения регрессии.

Далее рассчитывают остаточную дисперсию .

,

где , а .

Уравнение второй степени значимо лучше описывает экспериментальные данные, чем уравнение первой степени, если уменьшение дисперсии по сравнению с дисперсией линейной регрессии является значимым (неслучайным). Значимость различия между и оценивается критерием Фишера:

,

где число берется по справочным статистическим таблицам (приложение 1) соответственно степеням свободы и выбранного уровня значимости .

 

Порядок выполнения расчетной работы:

1. Ознакомиться с теоретическим материалом, изложенным в методических указаниях либо в дополнительной литературе.

2. Рассчитать коэффициенты линейного уравнения регрессии . Для этого необходимо вычислить суммы . Удобно сразу вычислить суммы , которые пригодятся для расчета коэффициентов параболического уравнения.

3. Вычислить расчетные значения выходного параметра по уравнению .

4. Вычислить общую и остаточную дисперсии , , а также критерий Фишера .

5. Рассчитать коэффициенты параболического уравнения регрессии . Учитывая сложность решения системы нормальных уравнений, рекомендуется записать систему нормальных уравнений в матричной форме:

,

где – матрица, элементами которой являются коэффициенты системы нормальных уравнений;

– вектор, элементами которого являются неизвестные коэффициенты;

– матрица правых частей системы уравнений.

6. Далее решить эту систему линейных уравнений в среде MathCad. Для этого воспользоваться стандартной функцией для решения системы линейных уравнений .

7. Вычислить расчетные значения выходного параметра по уравнению .

8. Вычислить остаточную дисперсию , а также критерий Фишера .

9. Сделать выводы.

10. Построить графики уравнений регрессии и исходных данных.

11. Оформить расчетную работу.




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 1497; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.