Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Рациональные параметры искусственной вентиляции легких 1 страница




 

Рациональная методика ИВЛ может сделать ее высоко­эффективной и в то же время практически безопасной, ес­ли она основана на обеспечении адекватного газообмена при максимальном ограничении вредных эффектов, а так­же при сохранении субъективного ощущения «дыхательно­го комфорта» у больного, если он во время ИВЛ остается в сознании.

Понятие «рациональная методика» подразумевает преж­де всего рациональный выбор для данного больного сле­дующих параметров ИВЛ: минутной вентиляции, дыха­тельного объема, частоты вентиляции, давления на вдохе и на выдохе (а также особенностей его изменения в тече­ние дыхательного цикла), отношения продолжительности вдоха и выдоха, скорости вдувания газов (а также особен­ностей ее изменения в течение дыхательного цикла).

Указанные параметры тесно связаны и обусловливают друг друга. Тем не менее при выборе конкретных величин параметров ИВЛ одному из них придается значение основ­ного, определяющего величину всех остальных. Таким основным параметром является минутный объем венти­ляции.

Минутный объем вентиляции. ИВЛ только тогда выполнит свое назначение, когда обеспечит достаточный минутный объем альвеолярной вентиляции, какими бы при этом ни оказались другие параметры.

При ИВЛ достаточную вентиляции можно определить как обмен вентиляционных объемов между внешней сре­дой и легкими, необходимый для поддержания нормально­го напряжения углекислого газа в артериальной крови. Величина достаточной вентиляции зависит от величины общего мертвого пространства (к которой следует приба­вить также и величину «мертвого пространства аппара­та»), а также от количества углекислого газа, выделяемо­го в организме больного.

Как указывалось выше, величиной, характеризующей легочную вентиляцию, является не минутный объем дыха­ния, а минутный объем альвеолярной вентиляции, который равен разности дыхательного объема и общего объема мертвого пространства, умноженной на частоту дыхания. При этом выбираемыми для ИВЛ параметрами являются дыхательный объем и частота дыхания.

Дыхательный объем. Он должен быть достаточ­ным для «промывки» мертвого пространства и удаления углекислого газа из альвеолярного воздуха. Если дыха­тельный объем будет меньше или равен объему мертвого пространства, то теоретически альвеолярная вентиляция должна быть равна нулю. Однако практически при дыха­тельном объеме, который меньше объема мертвого прост­ранства, незначительное количество вдыхаемого газа все же достигает альвеол [Briscoe et al., 1951]. Это происхо­дит главным образом в результате конического (слойного) движения вдыхаемого газа по воздухоносным путям и диф­фузии газа в газовой среде.

Для здорового человека размеры физиологического мертвого пространства и количество выделяемого углекис­лого газа могут быть высчитаны с достаточной точностью, что позволило Radford и соавт. (1954, 1955) предложить способ определения необходимого объема вентиляции.

С учетом объема мертвого пространства и необходимой минутной вентиляции Radford и соавт. составили номо­грамму для определения оптимального дыхательного объема, обусловленного полом и массой тела пациента, ча­стотой дыхания и температурой тела (рис. 3).

Номограмма Рэдфорда составлена для определения оп­тимального дыхательного объема в обычных условиях основного обмена. Условия при наркозе или проведении реанимационных мероприятий значительно отличаются от условий основного обмена. Поэтому в найденную по номограмме величину оптимального дыхательного объема вво­дят поправки с учетом ряда факторов:

1) при повышенной температуре тела необходимый дыхательный объем уве­личивают на 5% на каждые 0,5°С сверх 37°С;

2) при «обычной активности» увеличивают дыхательный объем на 10% по сравнению с таковым в условиях основного обме­на;

3) в местностях выше уровня моря дыхательный объем увеличивают на 5% на каждые 600 м;

4) при применении медикаментов, обладающих катаболическим действием (например, атропин, этиловый эфир), увеличивают дыха­тельный объем в среднем на 20%;

5) при ИВЛ через трахеальную трубку (или трахеостомическую канюлю) дыха­тельный объем уменьшают на 30 — 50 мл, так как трахеальная интубация (или трахеостомия) уменьшает мертвое пространство;

6) объем присоединительных частей аппара­та (маска, тройник, коннектор и т.д.) прибавляют к ды­хательному объему, найденному по номограмме Рэдфорда;

7) повышенное давление в аппарате во время фазы вдоха приводит к некоторому растяжению обычных гофрирован­ных шлангов на всем пути газовой смеси от аппарата до тройника. На заполнение возросшего объема шлангов ухо­дит некоторая часть подаваемого дыхательного объема; ее величина зависит от растяжимости шлангов и давления во время дыхательного цикла. С учетом этого фактора кор­ригируют подаваемый аппаратом дыхательный объем. Зна­чимость этого фактора особенно возрастает при высокоча­стотной ИВЛ с относительно малым дыхательным объемом и высокой величиной ПДКВ.

 

3, Номограмма для определения оптимального дыхательного объема [по Radford et al., 1954].

 

Практически при определении оптимального дыхательно­го объема для ИВЛ нужно учитывать сумму перечислен­ных факторов. Кроме того, при ИВЛ могут, быть регионарные нарушения вентиляционно-перфузионных отношений с увеличением доли альвеолярного мертвого простран­ства, что само по себе требует увеличения, нередко значи­тельного, объема вентиляции. Поэтому при ИВЛ величи­ну дыхательного объема, найденную по номограмме Рэдфорда, увеличивают в среднем на 30%. Т.М. Дарбинян (1976) предложил следующую формулу для расчета минут­ного объема вентиляции:

MOB (л/мин) = масса_тела/10 кг + 1.

В.С. Ширяев и А.Л. Тверской (1979) подтвердили прием­лемость этой формулы.

Не следует забывать о возможной утечке вдыхаемого газа на пути от аппарата до легких пациента. Утечка бы­вает непредвиденной (из-за плохой герметизации системы) или преднамеренной (открытие предохранительного клапа­на). Всякая утечка газа должна быть вовремя обнаруже­на, устранена или учтена при подаче необходимого дыха­тельного объема.

Для контроля адекватности вентиляции наряду с изме­рением напряжения углекислого газа в крови необходимо измерять минутную вентиляцию и дыхательный объем. До­стоверные данные позволяет получить только непосред­ственное измерение дыхательного объема с помощью специальных приборов (вентилометр, спиромонитор). Для большей точности измерений приборы или их датчики ус­танавливают в линии выдоха.

Одновременно с измерением дыхательного объема не­обходимо измерять максимальное давление вдоха с по­мощью мановакуумметра, который есть у аппаратов ИВЛ практически всех типов. Измерение давления на вдохе по­зволяет (при известном дыхательном объеме) весьма приблизительно вычислить растяжимость легких и грудной клетки (как отношение величины дыхательного объема к величине давления вдоха). Уменьшение растяжимости име­ет важное прогностическое значение прежде всего как ран­ний признак легочных осложнений с нарушением вентиляционно-перфузиоииых отношений. Кроме того, если приме­няется аппарат ИВЛ с переключением по давлению, то нераспознанное уменьшение растяжимости легких и груд­ной клетки неизбежно приведет к уменьшению дыхатель­ного объема со всеми нежелательными последствиями.

Частота дыхания. Не менее важно рационально выбрать частоту дыхания. Многие авторы считают опти­мальной частоту 14 — 18 в минуту при ИВЛ у взрослых [Максимов Б.П., 1979; Herzog, 1970; Bergman, 1972]. Вполне допустимы колебания частоты от 10 — 12 [Афин­ский Н.П., 1972; Pontoppidan, 1965] до 20 — 22 в минуту [Кассиль В.Л., Рябова Н.М., 1977].

Слишком редкое дыхание нерационально, так как при нем значительно возрастает необходимый дыхательный объем, что может привести к чрезмерно высокому и опас­ному «пику давления», к перерастяжению стенок альвеол и баротравме легких. Кроме того, слишком редкое дыха­ние с большими экспираторными паузами может вызвать так называемую циклическую гипоксемию [Bergman, 1961].

При более частом дыхании можно подобрать такой ды­хательный объем, чтобы альвеолярная вентиляция остава­лась нормальной. Так, Gray и соавт. (1959) для макси­мального уменьшения «пика давления» в альвеолах и среднего внутригрудного давления первыми предложили применять частое дыхание (до 50 — 60 в минуту) при сни­жении дыхательного объема до 250 мл.

Недостаточная и избыточная вентиляция. Что же яв­ляется показателем достаточности вентиляции: нормальное содержание О2 или СО2 в крови, оттекающей от лег­кого?

Насыщение крови кислородом зависит не только от ве­личины вентиляции, но и от распределения вентиляции и кровотока, существования артериовенозных шунтов, диф­фузионной способности альвеоло-капиллярных мембран, а при вдыхании газовой смеси — еще и от содержания в ней кислорода. В то же время удаление углекислого газа зависит практически только от альвеолярной вентиляции. Легко представить случай, когда вследствие значительного нарушения диффузии кровь легочных капилляров не будет достаточно насыщена кислородом (если во вдыхаемой сме­си газов парциальное давление кислорода не будет повышенным), какой бы величины ни достигла вентиляция, в то время как содержание углекислого газа в крови легоч­ных капилляров будет нормальным. При значительном уменьшении дыхательного объема, по высоком содержа­нии кислорода во вдыхаемой газовой смеси гииоксемии может и не быть, но обязательно наступят задержка угле­кислого газа и гиперкапния.

Таким образом, достаточность минутного объема венти­ляции определяется нормальным содержанием углекисло­го газа в крови, оттекающей от легкого. В свою очередь содержание углекислого газа в артериальной крови может быть определено по его содержанию в альвеолярном воз­духе, которое в норме составляет приблизительно 5,6% (РАсо2 соответственно равно 40 мм рт. ст). Следовательно, можно заключить, что при нормально функционирующих легких достаточным будет тот объем вентиляции, при ко­тором содержание СО2 в альвеолярном воздухе составит приблизительно 5,6%.

Гиповентиляция во время ИВЛ, когда больному подают смесь газов с повышенным содержанием кислорода, редко приводит к гипоксемии, но всегда вызывает задержку и накопление углекислого газа в альвеолярном воздухе и в крови, т.е. гипоркапнию.

Однако ИВЛ нередко сопровождается не гипо-, а гипервентиляцией, результатом которой становится гипокапния. Умеренная альвеолярная гипервентиляция (при напряже­нии CO2 в артериальной крови, равном 30 — 35 мм рт. ст.) почти никогда не является опасной. «Неинструментальная» диагностика гипер-, а особенно гипокапнии во время ИВЛ трудна и требует опыта и наблюдательности. Наиболее надежные результаты дает измерение напряжения угле­кислого газа в артериальной крови. Можно также изме­рить содержание углекислого газа в альвеолярном возду­хе. Следует помнить, что концентрации (напряжение) аль­веолярного и артериального CO2 могут считаться равными только у больных с нормальной функцией легких. При выраженных расстройствах отношения вентиляция/перфузия альвеолоартериальный градиент СО2 неопределенно увеличен и непостоянен, да и сам анализируемый в этих случаях газ представляет собой не альвеолярный, а так называемый конечно-выдыхаемый газ (end-expiration gas английских авторов).

На практике важно знать, как быстро меняется концент­рация CO2 в альвеолярном воздухе при тех или иных изменениях вентиляции. Допустим, что врач обнаружил у пациента признаки, гиперкапнии. Сколько времени нужно проводить гипервентиляцию, чтобы удалить избыток СО2 из альвеол? Dripps, Severinghaus (1955), ссылаясь на опыты Fenn, Rahn, Utis, утверждают, что требуется не менее 4 мин интенсивной гинервентиляции, чтобы полу­чить стойое снижение альвеолярной концентрации СО2 на 50% от исходного уровня. Таким образом, если в ре­зультате гиповентиляции РАсо2 поднялось с 40 до 80 мм рт. ст., то потребуется не менее 4 мин гипервентиляции, чтобы нормализовать содержание СО2 в альвеолах. Разу­меется, что при большем накоплении углекислого газа нужна еще более длительная гипервентиляция. Все указан­ное верно и тогда, когда у пациента имеется не гипер-, а гипокапния в результате гипервентиляции и когда необхо­димо поднять содержание СО2 до нормальных цифр. Ко­нечно, и в этом случае нужна довольно длительная нор­мальная или пониженная (допустима только при высоком содержании кислорода во вдыхаемой смеси газов) венти­ляция, чтобы вернуть содержание СО2 в альвеолах к нор­мальным цифрам.

Отметим, что для изменения концентрации альвеолярно­го кислорода нужно гораздо меньше времени: достаточно, например, нескольких глубоких вдохов газовой смеси с вы­соким содержанием кислорода, чтобы вывести больного из состояния дыхательной гипоксии. Разница связана с тем, что емкость крови и тканей для углекислоты гораздо вы­ше, чем для кислорода.

Снижение максимального и среднего давлений в легких. Мы отмечали уже, что больному при всех условиях дол­жен быть обеспечен достаточный минутный объем вен­тиляции. Однако совершенно не безразлично, ценой како­го давления в легких будет достигнут этот объем вентиля­ции. Как показали ставшие классическими исследования, вредные эффекты ИВЛ связаны прежде всего с повыше­нием среднего виутрилегочного давления. Поэтому долго считали рациональной такую методику ИВЛ, при которой дыхательные потребности пациента удовлетворяются при наиболее низком среднем давлении в легких.

Считалось общепринятым, что «пик давления» в легких на высоте вдоха не должен превышать 20 см вод.ст., и лишь во время коротких периодов раздувания легких до­пустимо давление, превышающее 30 см вод.ст. Жела­тельно, чтобы среднее внутрилегочное давление не пре­вышало 4 — 5 см вод.ст. Со времен исследований Frey, Stoffregen (1959) оптимальным считался такой режим ИВЛ, при котором среднее внутрилегочное давление стре­мится к нулю, как при спонтанном дыхании.

Дыхательные потребности больного во время ИВЛ при минимальном среднем давлении в легких мож­но обеспечить при соблю­дении следующих усло­вий.

1. Положительное давление в легких должно поддержи­ваться только во время введения в легкие требуемого дыхательного объема. Иными словами, выдох дол­жен начинаться немедленно после введения газа в легкие, без задержки после вдоха. Задержка газа в легких после окончания вдувания (пауза вдоха), как при использовании некоторых моделей аппаратов ИВЛ, приводит к появле­нию «плато» на кривой давления и к увеличению среднего внутрилегочного давления.

Паузой вдоха следует называть ту часть вдоха, во время которой вдувание газа в легкие пациента уже прекрати­лось, а выдох еще не начался. С технической точки зрения пауза вдоха характеризуется тем, что линии вдоха и выдо­ха аппарата перекрыты и от пациента отсоединены, по­этому скорость вдувания равна нулю, а давление «во рту» и дыхательный объем не увеличиваются (рис. 4). Ряд авто­ров, начиная с Engstrorn (1963), считают, что наличие «плато» способствует равномерности внутрилегочного распределения вентиляции [Максимов Б.П., 1979; Damman, McAslan, 1977; Zietz, 1981]. Вместе с тем специальные клинические исследования с применением азотографического метода определения равномерности вентиляции [Юревич В.М., 1966], равно как и экспериментальные исследования на модели легких [Черкасова А.А., 1970], не выявили отличий в равномерности распределения вентиля­ции при проведении ИВЛ с «плато» на вдохе и без него. Nordstrom (1972) в весьма обстоятельных экспериментальных исследованиях обнаружил, что Pao2 и Расо2 не имеют различий при ИВЛ с «плато» на вдохе и без него. Зато при наличии «плато» на вдохе было отмечено уменьшение минутного и ударного объема сердца, снижение артери­ального давления, а также снижение проходимости сосу­дов легкого (что эквивалентно уменьшению легочного кровотока). Клинические исследования Б.П. Максимова (1979) также показали, что введение паузы вдоха, состав­ляющей по времени 20% от длительности всего дыхатель­ного цикла, приводит к повышению среднего внутрилегоч­ного давления на 43% и сопровождается снижением веноз­ного возврата крови и производительности работы сердца.

 

4. Функциональные кривые объемной скорости (V), дав­ления (Р) и объема (V) при ИВЛ с паузой вдоха:

Тff, — продолжительность вдуоания;

TI — продолжительность вдоха:

ТE — продолжительность выдоха:

TCпродолжительность дыхатель­ного цикла;

ТIP — продолжительность паузы вдоха.

 

Представляет несомненный интерес рассмотреть про­цессы, происходящие в легких при наличии или отсутствии паузы вдоха с использованием математической двухкамер­ной модели легких. Характеристиками модели служат об­щие значения растяжимости (Со) и сопротивления (Ro), a также регионарные значения этих параметров: для левой камеры Ci и Ri, для правой камеры Са и R2.

 

Методика нашего исследования заключалась в расчете и сопоставлении объемов газа (V1, V2), поданных в каж­дую камеру, и возникающих там давлений P1, Р2 (для модели в целом — V0 и Р0). При этом рассмотрены два режима ИВЛ: с паузой на вдохе и без паузы, обеспечи­вающих одну и ту же вентиляцию. Кроме того, исследова­ния основывались на том, что давления на входе в каждую камеру равны между собой, а объемная скорость вдува­ния в модель равна сумме объемных скоростей вдувания газа в каждую из камер:

V0 = V1 + V2.

Чтобы приблизить результаты расчетов к реальной кли­нической ситуации, они были выполнены для следующих пяти комбинаций характеристик камер модели:

модель 1 — в целом имеет типовое значение растяжимо­сти и несколько увеличенное (для получения контрастных результатов) значение сопротивления. Характеристики каждой камеры одинаковы, что соответствует отсутствию легочной патологии;

модель 2 — при прежних значениях характеристик моде­ли в целом моделируется рестриктивно-обструктивная па­тология в левой камере: снижается ее растяжимость и од­новременно увеличивается сопротивление. Изменения ха­рактеристик подобраны так, чтобы постоянные времени камер (тау=RC) сохранили прежнее и равное предыдущей ситуации значение;

модель 3 — сохраняя неизменными значения характери­стик модели в целом, моделируется маловероятная ситуа­ция, при которой снижение растяжимости в левой камере сопровождается уменьшением ее сопротивления; в правой камере характеристики изменяются в обратном направле­нии. Существенная особенность этого случая — резкое раз­личие (в 16 раз) постоянной времени камер;

модель 4 — рестриктивная патология: растяжимость ле­вой камеры по сравнению с правой снижается, но сопро­тивления камер остаются равными между собой и соответ­ствующими первой ситуации. Общие характеристики моде­ли остаются теми же, что и в других ситуациях;

модель 5 — обструктивная патология в правой камере:

при нормальных и одинаковых значениях растяжимости сопротивление правой камеры значительно увеличивается. Общие характеристики модели остаются неизменными.

Количественные значения параметров камер, принятые в расчетах, приведены в табл. 2.

 

Таблица 2

Величины функциональных параметров для исследуемых моделей «легочной патологии»

Параметр Значение параметров для моделей
         
Растяжимость, л/кПа:          
левая камера, C1 0,25 0,10 0,10 0,10 0,25
правая камера, С2 0,25 0,40 0,40 0,40 0,25
общая, С0 0,50 0,50 0,50 0,50 0,50
Сопротивление, - кПа x с/ л          
левая камера, R1 0,80 2,00 0,50 0,80 0,50
правая камера, R2 0,80 0,50 2,00 0,80 2,00
общее, R0 0,40 0,40 0,40 0,40 0,40
Постоянная времени, с:          
левая камера, t1 0,20 0,20 0,05 0,08 0,125
правая камера, Т2 0,20 0,20 0,80 0,32 0,50
общая, т0 0,20 0,20 0,20 0,20 0,20

 

Результаты расчета приведены в табл. 3. Для режима ИВЛ с паузой вдоха после ее возникнове­ния давления выравниваются: газ из камеры с большим давлением перетекает в камеру с меньшим давлением. Давления выравниваются только в тех случаях, когда в конце вдувания давления в левой и правой камерах не­равны, т.е. в моделях 3, 4 и 5. Конечным результатом этого процесса должно быть установление в каждой каме­ре общего значения, равного Р0 = S/V, т.е. 1,6 кПа. Одна­ко для такого выравнивания требуется некоторое время. Для принятой двухкамерной модели постоянная времени выравнивания имеет вид:

Tв=C1C2 (R1 + R2 ) /(C1 + С2)

Как известно, для завершения экспоненциального про­цесса выравнивания на 95% требуется интервал, равный трем постоянным времени выравнивания, т.е. для модели 3 — 0,6 с, для модели 4 — 0,38 с и для модели 5 — 0,94 с. Отсюда ясно, что процесс выравнивания давления в каме­рах модели при принятом значении длительности паузы вдоха 0,3 с полностью завершиться не успеет. Поэтому давления в камерах в конце паузы хотя и несколько сбли­зятся, но все же будут различными. Естественно, что и объ­ем в этих камерах в конце паузы также не будет равным (см. табл. 2, значение для моделей 3, 4 и 5).

Результаты расчетов показывают, что при одинаковых характеристиках камер (модель 1) объемы и давления в них будут равными. В этом случае введение паузы вдоха оказывается безрезультатным.

При рестриктивно-обструктивной патологии в одной из камер (модель 2) изменения растяжимости и сопротивле­ния таковы, что их влияния на постоянную времени ка­меры имеют тенденцию к взаимной компенсации: сниже­ние растяжимости уменьшает, а рост сопротивления уве­личивает постоянную времени камеры. Если комбинация этих факторов приводит к равенству постоянных времени обеих камер, как в данном случае, то давление в конце вдувания в них становится одинаковым и не требует выравнивания. Однако объемы вентиляции камер не равны между собой и прямо пропорциональны их растяжимости. Отсутствие выравнивания давления отнюдь не означает равномерного внутрилегочного распределения объемов, но делает бесполезным применение паузы вдоха.

В модели 3 рестриктивно-обструктивная патология тако­ва, что сопровождается неравенством постоянных времени камер. В конце вдувания объемы и давления в камерах различны. Поэтому при ИВЛ с паузой вдоха происходит выравнивание давления, которое, однако, за длительностью паузы при использованных в расчете значениях парамет­ров завершается лишь на 78%. Так как в конце вдувания большее давление было создано в камере, в которую был введен меньший объем, то происходит парадоксальное яв­ление: выравнивание давления сопровождается углублением неравенства распределения объемов. Поэтому ИВЛ без паузы на вдохе, с точки зрения равномерности вентиляции, более благоприятна, поскольку высокое сопротивление «сдерживает» поступление газа в камеру с большей растя­жимостью.

Показатель вентиляции Модель 1 Модель 2 Модель 3 Модель 4 Модель 5
    левая каме­ра правая камера модель в це­лом левая камера правая камера модель в це­лом левая камера правая камера модель в целом левая камера правая камера модель в целом левая камера правая камера модель в целом
Показатели вентиляции в конце вдувания:                                                            
                                                           
Скорость вдувания, V, л/с:                              
без паузы вдоха   0,400   0.400   0,800   0,160     0,640   0,800   0,240   0,560   0,800   0,187   0,613   0,800   0.457   0,343   0,800
с паузой вдоха 0.570 0,570 1,140 0,228 0,912 0,140 0,380 0,760 1,140 0,281 0,859 1,140 0,676 0.464 1,140
Дыхательный объем, V, л:                              
без паузы вдоха 0,400 0,400 0,800 0,160 0,640 0,800 0,240 0,560 0,800 0,187   0,613 0,800 0,457 0,343 0,800
с паузой вдоха 0,400 0,400 0,800 0,160 0,640 0,800 0,267 0,532 0,800 0,198 0,602 0,800 0,474 0,326 0,800
Давление в камере, Р, кПа:                              
без паузы вдоха 1,60 1,60 1,60 1,60 2,40 1,40 1.87 1,53 1,83 1,37
с паузой вдоха 1,60 1,60 1,60 1,60 2,66 1,33 1,97 1,51 1,89 1,29
Давление на входе в модель, Ро, кПа                              
без паузы вдоха 1,92 1,92         о ко         2,02         2,06
с паузой вдоха — — 2,06 — — 2,06 2,85 2,19 2,23
Показатели вентиляции в конце паузи вдоха:                              
Давление в камере Рп, кПа Вследствие равенства давлений в камерах в конце вдувания перераспределение давлении и объемов в камерах не происходит 1,837 1,540 1,636 1,591 1,710 1,470
Дыхательный объем в камере, Vп, л 0,186 0,614 0,800 0,165 0,635 0,800 0,428 0,372 0,800
Давление на входе в модель, Роп, кПа 1,780 1.610 1,660

 




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 846; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.036 сек.