КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Динамические и стохастические системы. 6 страница
40. Генетика – наука, изучающая законы наследственности и изменчивости живых организмов, закономерности передачи наследственной информации из поколения в поколение, а также возможности целенаправленного воздействия на эти процессы. Термин «генетика» как наука о явлениях наследственности и изменчивости ввел в научный обиход в 1905 году английский биолог Уильям Бэтсон. Но основоположником генетики считается Грегор Иоганн Мендель (1822 – 1884), открывший в 1865 году один из основных законов передачи генетической информации – закон дискретной наследственности. Смысл его состоит в том, что в результате скрещивания гибрид наследует родительские признаки специфическим образом, в результате чего у него явно проявляется т.н. доминантный (преобладающий) признак, а рецессивный (подавленный) остается в скрытом состоянии. В следующем же поколении (у внуков) эти признаки со статистической достоверностью (т.е. на достаточно большом материале) распределяются в соотношении три к одному. Научный мир не смог оценить в то время это выдающееся открытие, о нем не знал и Дарвин, что затрудняло ему понимание природы «движущих сил», приводящих к появлению новых видов живых организмов в процессе эволюции, и препятствовало продуктивной полемике с антидарвинистами. В 1900 году Гуго де Фриз, Карл Коренс и Эрик Чермак, не зная работ Менделя, переоткрыли эти законы, но впоследствии, узнав о них, вернули Менделю принадлежащий ему по праву приоритет. Голландский ботаник Гуго де Фриз, изучая процессы наследственной изменчивости, ввел в науку понятие мутации и объяснял при помощи этой концепции процесс эволюции видов живых организмов. В конце Х1Х – начале ХХ веков знаменитый немецкий зоолог Август Вейсман (1834 – 1914) обнаружил, что половые клетки организмов (носители наследственной информации) как бы обособлены от соматических (телесных) клеток, в целом не изменяются в процессе жизнедеятельности организма и слабо подвержены обычным внешним влияниям. В 10-е годы ХХ века крупный американский биолог Томас Хант Морган (1866 – 1945) с помощью экспериментов с мушкой дрозофилой обосновал хромосомную теорию наследственности и открыл явление кроссинговера, когда две хромосомы при сближении обменивались фрагментами. В 20-30-е годы американский генетик Герман Меллер (основоположник радиационной генетики) экспериментально обнаружил эффект увеличения количества мутаций при повышении температуры среды и доказал возможность возникновения искусственных мутаций под действием определенной дозы рентгеновских лучей. В 1925 году русские ученые Г.А. Надсон и Г.С. Филипченко положили начало новой науки – радиобиологии, изучая влияние рентгеновского излучения на клетки простых организмов. В 40-е годы нашего века выяснилось, что носителем наследственной информации является макромолекула ДНК, поскольку после трансплантации ДНК одного штамма бактерий в другой, в нем стали появляться признаки донора. И наконец, в 1953 году в Кембридже, в знаменитой Кавендишевской лаборатории, англичанин Френсис Крик – физик (р. 1916 г.) и американец Джеймс Уотсон – биолог (р. 1928 г.), используя результаты рентгеноструктурного анализа, выполненного английским физиком Маршаллом Уилкинсом (р. 1916 г.), предложили модель структуры ДНК, общеизвестную теперь как двойная спираль (Нобелевская премия за 1962 год). С этого момента началось лавинообразное развитие генетики как фундаментальной дисциплины, вобравшей в свои методы самые передовые достижения теоретической и прикладной физики, химии и математики. В последние годы ХХ века получили широкое развитие её прикладные аспекты - генная инженерии и генная технология. Некоторые генетические эксперименты, такие, как клонирование организмов высших млекопитающих и принципиальная возможность клонирования человека, вторжение в генные структуры высших организмов и искусственное изменение их генома и т.п., по своим возможным последствиям выходят за пределы собственно науки и попадают в область религии, этики и морали, порождая дискуссии общекультурного значения и философского масштаба. Клонирование (от греч. клон - ветвь, отпрыск) – создание последовательности следующих друг за другом поколений наследственно однородных потомков одной исходной особи какого-либо вида живых организмов (микроорганизма, растения, животного), образованной путем бесполого (вегетативного) размножения. Такие организмы являются практически полными генетическими копиями исходного предка. Клоном также является культура какой-либо ткани организмов (совокупность клеток), полученная посредством митотического деления (митоза). В естественных условиях процесс клонирования происходит при делении клеток различных микроорганизмов, вегетативном (например, посредством укоренения черенков) размножении растений, в результате партеногенеза у насекомых, ракообразных и т.п., и характеризуется теоретически полной передачей генетической информации от предка к потомку. Любой орган тела животных и человека в этом смысле представляет собой клон, однояйцовые близнецы, сколько бы их ни было – это тоже клон. В последние годы в связи с общими успехами, достигнутыми в науке, особенно в медицине, биологии, генетике и генной инженерии, возник интерес к изучению возможности клонирования (т.е. создания генетической копии) высших животных и даже человека, мотивацией чего является проблема пересадки больным абсолютно биологически совместимых (в сущности своих собственных и потому неотторгаемых) «запасных» органов в терапевтически безнадежных случаях. Появились сообщения об определенных успехах в этой области (клонирование овцы Долли из клетки взрослой особи и обезьянки Тетры путем деления оплодотворенной яйцеклетки на несколько частей и внедрения их другим матерям, т.д.). Существуют и многие другие менее известные и даже закрытые работы по этой проблеме, направленные на клонирование человека. Некоторые известные специалисты утверждают, что перспективы клонирования человека вполне реальны, однако реакция общества оказалась неоднозначной, поскольку эта проблема далеко выходит за пределы естествознания, биологии и медицины и требует осознания с точки зрения морали, этики, философии и религии. Важной негативной особенностью процесса клонирования высших организмов (овца Долли) оказалось то, что возраст клонированного организма изначально не может быть меньше, чем возраст особи, являющейся клеточным донором, поскольку в ДНК исходной клетки, помимо необходимой генетической информации, содержатся и все ошибки, накопившиеся за годы существования организма-донора. Это может привести к тому, что клонированный организм получит по наследству не только генетические дефекты, в той или иной мере изначально присущие донору, но и новые болезни, которые могут возникнуть у клона в результате приобретенных по разным причинам донором в течение его жизни деструктивных изменений на клеточном уровне. В самой возможности клонирования того или иного отдельного органа ничего аморального нет, однако на данном этапе развития биологии это вряд ли осуществимо, поскольку любой орган как законченная полноценно функционирующая структура может сформироваться только в системе всего организма. Что касается клонирования клеточной культуры, то польза таких исследований очевидна. Эти клетки можно будет вводить в поврежденный орган, в котором они будут встраиваться в его структуру, заменяя поврежденные или дефектные клетки. (См. также: Аксиомы биологии, Дарвин, Мендель).
41. Фундаментальные взаимодействия – четыре физических взаимодействия, к которым сводится всё многообразие процессов макромира, микромира и мегамира. 1). Сильное ядерное, - переносчик обменный пи-мезон (пион), масштаб действия примерно – 10– 15 м, связывает нуклоны в атомном ядре. 2). Электромагнитное, - переносчик фотон, дальнодействующее выражается законом Кулона. 3). Слабое ядерное, - переносчик промежуточный векторный бозон, средний радиус действия примерно – 10– 17 м, приводит к бета-распаду ядер. 4). Гравитационное, - переносчик гравитон, дальнодействующее, выражается законом всемирного тяготения Ньютона. Фундаментальные константы – основные физические параметры, которые характеризуют все процессы, происходящие в природе на разных уровнях реальности (таких, как микромир, макромир, мегамир), и известные значения которых, в свете современных теорий, принципиальны для обеспечения устойчивости Вселенной и её долговременного развития. К основным фундаментальным константам относятся: 1) скорость света с=3*108 м/сек, 2) гравитационная постоянная G=6,627*10 –11 м3 кг-1сек-2, 3) постоянная Планка h = 6,62377*10 –34 кг м2 сек-2, 4) масса протона mp=1,6224*10 –27 кг, 5) масса нейтрона mn=1,6749*10 –27 кг, 6) масса электрона me = 9,106*10 –31 кг, 7) масса альфа-частицы ma=6,6444*10 –27 кг, 8) заряд электрона qe = 1,602*10 –19 Кулона, 9) постоянная тонкой структуры a =2 p qe2c-1h-1=1/137, характеризующая электромагнитное взаимодействие элементарных частиц (см.). 10) Сюда относится также и соотношение между интенсивностями четырех фундаментальных взаимодействий – сильное / электромагнитное / слабое / гравитационное = 1 / 0,01 / 10-5 / 10-39, некоторые важные резонансные характеристики термоядерных реакций, а также крупномасштабная геометрическая размерность пространства Вселенной (см.), равная 3 (определяемая в прямоугольной декартовой системе координат через три независимые переменные { x,y,z } и условно обозначаемая терминами длина, ширина и высота). В настоящее время серией модельных экспериментов показано, что значения фундаментальных констант могут быть только такими, какими они представлены в той или иной системе физических единиц, - в противном случае (если бы они даже незначительно отличались от известных величин) структура Вселенной на всех уровнях её организации была бы совершенно иной, причем такой мир был бы несовместим с возможностью существования человека. Никакая научная теория не может объяснить причину, по которой в природе выполняется столь точная «подстроенность» этих величин. Значения этих констант также невозможно получить теоретически, исходя из некоторых более общих представлений, - их определяют экспериментально, причем неизвестно, являются ли эти числа истинными константами, или они медленно изменяются по мере эволюции Вселенной.
Дата добавления: 2015-06-27; Просмотров: 371; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |