КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Радиометрический анализ
Радиометрия — обнаружение и измерение числа распадов атомных ядер в радиоактивных источниках или некоторой их доли по испускаемому ядрами излучению. Рассмотрим методы регистрации ионизирующих излучений. 1. Ионизационный метод основан на измерении эффекта взаимодействия излучения с веществом — ионизации газа, заполняющего регистрационный прибор. Ионизационные детекторы излучения представляют собой помещённый в герметичную камеру, заполненную воздухом или газом, заряженный электрический конденсатор (электроды) для создания в камере электрического поля. Заряженные частицы (а или Р), попавшие в камеру детектора, производят в ней первичную ионизацию газовой среды; у-кванты вначале образуют быстрые электроны в стенке детектора, которые затем вызывают ионизацию газа в камере. В результате образования ионных пар газ становится проводником электрического тока. При отсутствии напряжения на электродах все ионы, появившиеся при первичной ионизации, переходят в нейтральные молекулы, а при возрастании напряжения под действием электрического поля ионы начинают направленно двигаться, т.е. возникает ионизационный ток. Сила тока служит мерой количества излучения и может быть зарегистрирована прибором. При некотором значении напряжения все образованные при излучении ионы достигают электродов, и при увеличении напряжения ток не возрастает, т.е. возникает область тока насыщения. Сила ионизационного тока насыщения в данной области зависит от числа первичных пар ионов, созданных ядерным излучением в камере детектора. В этих условиях работают ионизационные камеры. При дальнейшем увеличении напряжения сила тока вновь возрастает, так как образованные излучением ионы, особенно электроны, при движении к электродам приобретают ускорения, достаточные для того, чтобы самим производить ионизацию вследствие соударений с атомами и молекулами газа. Этот процесс получил название ударной или вторичной ионизации. Эту область напряжений называют областью пропорциональности, т.е. областью, где существует строгая пропорциональность между числом первично образованных ионов и общей суммой ионов, участвующих в создании ионизационного тока. В данном режиме работают пропорциональные счётчики. При дальнейшем увеличении напряжения сила ионизационного тока уже не зависит от числа первичных пар ионов. Газовое усиление настолько возрастает, что при появлении любой ядерной частицы возникает самостоятельный газовый разряд. Эту область напряжений называют областью Гейгера, в данном режиме работают счётчики Гейгера—Мюллера. Эффективность счётчиков Гейгера—Мюллера к р-излучению близка к 100 %. Под эффективностью счётчика е понимают отношение числа частиц (в %), зарегистрированных счётчиком, к числу частиц, попавших в его рабочий объём. Эффективность счётчиков Гейгера—Мюллера к у-излучению не превышает 1...3 %. 2. Сцинтилляторный метод. В основе работы сцинтилляционного детектора лежит способность некоторых веществ преобразовывать энергию ядерных излучений в фотоны видимого и ультрафиолетового света. Механизм этого процесса достаточно прост. Ядерные частицы (либо вторичные электроны, образовавшиеся при поглощении у-квантов) переводят молекулы сцинтиллятора в возбужденное состояние. Переход молекул сцин-тиллятора в основное состояние сопровождается испусканием фотонов в УФ- или видимой области. Каждая отдельная вспышка, появившаяся в результате прохождения ядерной частицы или у-кванта, называют сцинтилляцией. Отдельные вспышки регистрируются фотоэлектронным умножителем, преобразующим световые импульсы в электрические, которые усиливаются линейным или логарифмическим усилителем. Затем электрические импульсы проходят через дискриминатор, пропускающий импульсы определённой амплитуды и отсекающий «шумы», и попадают на регистрирующий прибор. Сцинтилляторы принято классифицировать следующим образом: 1) неорганические сцинтилляторы: ZnS(Ag), Nal(Tl), Agl(Eu) и др. (в скобках указан активатор, обеспечивающий возникновение в кристалле сцинтилляций); 2) сцинтилляторы из органических кристаллов: нафталин, антрацен; 3) жидкостные сцинтилляторы: 2,5-дифенилоксазол и w-терфенил в толуоле, диоксане и других раствори 4) пластмассовые сцинтилляторы с активатором. Сцинтилляционные счётчики обладают, как правило, малым разрешающим временем: 10-5... 10-6 с-1. Варьирование сцинтиллятора позволяет сделать Сцинтилляционные счётчики чувствительными к одному виду излучения и малочувствительными к другому. Использование жидкостных сцинтилляторов позволяет эффективно регистрировать низкоэнергетические излучения таких радиоактивных изотопов, как 3Н, 14 С, 35S, которые широко используют в биологии, биохимии, медицине. Фон сцинтилляционных счётчиков, имеющих специальную схему совпадения, не превышает нескольких импульсов в минуту. 3 Люминесцентный метод основан на накапливании части энергии поглощённого ионизирующего излучения и отдачи его в виде светового свечения после дополнительного воздействия ультрафиолетовым излучением (или видимым светом) или нагревом. Под действием излучения в люминофоре (щёлочно-галоидных соединениях типа LiF, Nal, фосфатных стекол, активированных серебром) создаются центры фотолюминесценции, содержащие атомы и ионы серебра. Последующее освещение люминофоров ультрафиолетовым светом вызывает видимую люминесценцию, интенсивность которой в диапазоне 0,1... 10 Гр пропорциональна дозе, затем достигает максимума (при 350 Гр), а при дальнейшем увеличении дозы падает. Фотографический метод основан на способности излучения при взаимодействии с галогенидами серебра (AgBr или AgCl) фотографической эмульсии восстанавливать металлическое серебро подобно видимому свету, которое после проявления выделяется в виде почернения. При этом степень почернения фотопластинки пропорциональна дозе излучения. 4 Химический метод основан на измерении числа молекул или ионов (радиационно-химический выход), образующихся или претерпевших изменение при поглощении веществом излучения. В химических дозиметрах подобраны вещества с выходом химической реакции, пропорциональным поглощённой энергии ионизирующего излучения. В настоящее время широко используется ферро-сульфатный дозиметр, основанный на реакции окисления под действием излучения двухвалентного железа в трёхвалентное.
Дата добавления: 2015-06-27; Просмотров: 819; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |