КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Гидродинамическое подобие
Полученное в предыдущем параграфе число Рейнольдса имеет большое значение в гидравлике, а также в аэродинамике, так как является одним из основных критериев гидродинамического подобия. Гидродинамическое подобие — это подобие потоков несжимаемой жидкости, включающее в себя подобие геометрическое, кинематическое и динамическое. Геометрическое подобие, как известно из геометрии, означает пропорциональность сходственных размеров и равенство соответствующих углов. В гидравлике под геометрическим подобием мы будем понимать подобие тех поверхностей, которые ограничивают потоки жидкостей, т. е. подобие русел (рис. 40). Кинематическое подобие — это подобие линий тока и пропорциональность сходственных скоростей. Очевидно, что для кинематического подобия потоков требуется геометрическое подобие русел. Динамическое подобие означает пропорциональность сил, действующих на сходственные элементы кинематически подобных потоков и равенство углов, характеризующих направление этих сил. В потоках жидкостей обычно действуют разные силы — давления, вязкости (трения), тяжести и др. Соблюдение пропорциональности всех этих разнородных сил означает так называемое полное гидродинамическое подобие. Например, пропорциональность сил давления Р и сил трения Т, действующих на сходственные объемы в потоках / и //, можно написать в виде Осуществление на практике полного гидродинамического подобия оказывается весьма затруднительным, поэтому обычно имеют дело с частичным (неполным) подобием, при котором наблюдается пропорциональность лишь главных, основных сил. Для напорных течений в закрытых руслах, т. е. для потоков в трубах, в гидравлических машинах и т. п., такими главными силами, как показывают расчеты, являются силы давления, трения и их равнодействующие, т. е. силы инерции. Последние, как это можно показать для подобных потоков, пропорциональны произведению динамического давления r u 2/2 на характерную площадь S. Для геометрически и кинематически подобных потоков и сходственных частиц можно записать: Для подобных потоков / и // будем иметь или Последнее отношение, одинаковое для подобных потоков, называется числом Ньютона и обозначается Ne. Заметим попутно, что этому же произведению r u 2ср S в подобных потоках пропорциональны силы, с которыми поток воздействует (или способен воздействовать) на преграды: твердые стенки, лопасти гидромашин, обтекаемые потоком тела и т. п. Так, например, если поток жидкости наталкивается на безграничную стенку (см. рис. 41), установленную нормально к нему, и в результате, растекаясь по стенке, меняет свое направление на 90°, то на основании теоремы механики о количестве движения секундный импульс силы равен Это и есть сила воздействия на преграду. При другом угле установки стенки или другой ее форме и размерах вместо единицы будет другой коэффициент пропорциональности. Вначале рассмотрим наиболее простой случай — напорное движение идеальной жидкости, т. е. такое движение, при котором отсутствуют силы вязкости, а действие силы тяжести проявляется через давление. Для этого случая уравнение Бернулли для сечений 1 — 1 и 2—2 (см. рис. 40) имеет следующий вид:
или Для двух геометрически подобных потоков правая часть уравнения имеет одно и то же значение: следовательно, левая часть тоже одинакова, т. е. разности давлений пропорциональны динамическим явлениям: Таким образом, при напорном движении идеальной несжимаемой жидкости для обеспечения гидродинамического подобия достаточно одного геометрического подобия. Безразмерная величина, представляющая собой отношение разности давлений к динамическому давлению (или разности пьезометрических высот к скоростной высоте), называется коэффициентом давления или числом Эйлера и обозначается Еu. Посмотрим, какому условию должны удовлетворять те же геометрически и кинематически подобные потоки, для того чтобы было обеспечено их гидродинамическое подобие при наличии сил вязкости, а следовательно, и потерь энергии, т. е. при каком условии числа Ей будут одинаковыми для этих напорных потоков. Уравнение Бернулли теперь будет иметь следующий вид: или Как видно из уравнения (5.6), числа Еu будут иметь одинаковые значения для рассматриваемых потоков и потоки будут подобны друг другу гидродинамически при условии равенства коэффициентов сопротивления z, (равенство коэффициентов a1 и a2 для сходственных сечений двух потоков следует из их кинематического подобия). Таким образом, коэффициенты z в подобных потоках должны быть одинаковыми, а это значит, что потери напора для сходственных участков (см. рис. 40) пропорциональны скоростным напорам, т. е. Рассмотрим очень важный в гидравлике случай движения жидкости — движение с трением в цилиндрической трубе, для которого Для геометрически подобных потоков отношение l/d одинаково, следовательно, условием гидродинамического подобия в данном случае является одинаковое значение для этих потоков коэффициента l. Последний на основании формулы выражается через напряжение трения на стенке tо и динамическое давление следующим образом: Следовательно, для двух подобных потоков I и II можно записать т. е. напряжения трения пропорциональны динамическим давлениям. Условие динамического подобия потоков: или, переходя к обратным величинам, В этом заключается закон подобия Рейнольдса, который можно сформулировать следующим образом: для гидродинамического подобия геометрически подобных потоков с учетом сил вязкости требуется равенство чисел Рейнольдса, подсчитанных для любой пары сходственных сечений этих потоков. Число Re есть величина, пропорциональная отношению динамического давления к напряжению трения или, что то же самое, отношению сил инерции к силам вязкости. Чем больше скорость и поперечные размеры потока и чем меньше вязкость жидкости, тем больше число Re. Для потока идеальной жидкости число Re бесконечно велико, так как вязкость n=0. В случаях безнапорных течений под действием разности нивелирных высот вопрос о подобии осложняется, так как приходится вводить еще один критерий подобия — число Фруда, учитывающее влияние на движение жидкости силы тяжести. Однако для подавляющего большинства интересующих нас задач в области авиационной техники этот критерий не имеет значения, и мы его рассматривать не будем. Итак, в подобных потоках, мы имеем равенство безразмерных коэффициентов и чисел a, z, l, Eu, Ne, Re и некоторых других, которые будут введены и рассмотрены ниже. Изменение числа Re означает, что меняется соотношение основных сил в потоке, в связи с чем указанные коэффициенты могут также меняться. Поэтому все эти коэффициенты в общем случае следует рассматривать как функции числа Re (хотя в некоторых интервалах числа Re они могут оставаться постоянными).
Дата добавления: 2015-06-27; Просмотров: 9493; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |