КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Быстрое начало
Попробуем уменьшить объемы производства красок, например 2 т краски Н и 2 т краски В. Подставив эти числа в таблицу, мы получим новые значения прибыли, суточного расхода продуктов и спроса на краски. Продолжая этот процесс перебора вариантов, мы рано или поздно найдем вариант, при котором прибыль будет максимальной, и в то же время будут выполнены ограничения по запасам продуктов и спросу на краски. Это будет означать, что мы решили оптимизационную задачу. Однако такой процесс поиска решений может оказаться слишком долгим и утомительным. Кроме того, если бы номенклатура красок включала в себя не два, а, например, десять видов, мы вообще вряд ли смогли бы найти оптимальный вариант организации производства путем простого перебора вариантов. Таблица 2 изменяемых ячеек и ограничений. В таких случаях на помощь приходят специальные программы — решатели оптимизационных задач. Одна из таких программ — Solver — включена в систему Microsoft Excel как дополнение Поиск решения (раздел меню Сервис). Поиск решения Для решения оптимизационной задачи, оформленной в структуре ЭТ, необходимо вызвать приложение Поиск решения (меню Сервис). При этом на экране появится диалоговое окно Поиск решения. В поле Установить целевую (ячейку) окна Поиск решения необходимо ввести имя (адрес) соответствующей ячейки. Для нашего примера это ячейка Е24. Затем указывается вид оптимизации путем «нажатия» соответствующей кнопки, расположенной непосредственно под полем целевой ячейки. В поле Изменяя ячейки указываются имена (адреса) ячеек, содержимое которых подбирается программой поиска решения таким образом, чтобы обеспечить требуемое значение целевой ячейки. Для нашего примера изменяемыми ячейками являются В23, В24, содержащие объемы суточного производства красок.
В этом смысле усложнение задачи связано с увеличением ее размерности (количества изменяемых ячеек) и числа ограничений. Практические задачи оптимизации включают в себя десятки и даже сотни Кнопка Предположить поможет вам в определении изменяемых ячеек: нажатие этой кнопки приводит к вводу в окно Изменяя ячейки имен тех ячеек, которые программа поиска расценивает как изменяемые. Часть 1. Поиск решений на электронных таблицах Быстрое начало
В поле Ограничения должны быть введены все ограничения, связанные с решаемой задачей. В нашем примере такие ограничения делятся на три группы: • естественные ограничения: В23:В24 >= 0 (они вводятся путем • ограничения по запасам исходных продуктов: • ограничения спроса на краски: В23 >= D29; В24 <= СЗО. использованием соответствующих кнопок, расположенных в правой части поля ограничений окна Поиск решения. Нажатие кнопки Добавить или Изменить приводит к вызову дополнительного окна определения ограничений. В поле Ссылка на ячейку вводится левая часть ограничения. Список Ограничение включает в себя отношение равенства, «больше или равно», «меньше или равно», отношение цел, которое означает, что левая часть ограничения должна быть целым числом, отношение двоич, означающее, что левая часть ограничения должна быть двоичным числом (т. е. принимающим значения 0 или 1). При использовании отношений цел и двоич поле справа от списка ограничений остается пустым. При использовании любого другого отношения в этом поле размещается правая часть ограничения. Нажатие кнопки Выполнить окна Поиск решения приводит к запуску процесса поиска решения задачи оптимизации. В результате поиска программа находит такие значения изменяемых ячеек, при которых достигается оптимальное значение целевой ячейки. Для нашей задачи о красках оптимальное решение будет определяться следующими значениями изменяемых ячеек: • объем производства краски Н (ячейка В23) — 3,33 т; • объем производства краски В (ячейка В24) — 1,33 т. ограничений) составит 12,65 тыс. долл. Виды ячеек и зависимости Выше мы уже использовали понятия изменяемой ячейки и целевой ячейки. Изменяемые ячейки всегда содержат числовую информацию, Которая подбирается в процессе поиска решения таким образом, чтобы обеспечить оптимальное значение целевой ячейки. Кроме того, в процессе поиска используются еще два вида ячеек: • ячейки исходных данных; • зависимые ячейки. Ячейки исходных данных содержат числа, которые не меняются программой поиска решения (Solver), зависимые ячейки содержат формулы, которые неоднократно перевычисляются в процессе поиска решения. Ячейки разного вида в электронной таблице целесообразно закрашивать разным цветом. Например, в приведенных выше таблицах мы использовали для этого разные степени затушевывания ячеек. Наличие зависимостей между ячейками разных видов в среде EXCEL может быть проиллюстрировано графом зависимостей, по-строенным непосредственно на структуре таблицы (см. табл. 3). По-строение такого графа связано с использованием меню Сервис (Зави-симости, Панель зависимостей). Таблица 3 Использование графа зависимостей позволяет формально контролировать структуру таблицы. В правильно составленной таблице все стрелки должны начинаться в изменяемых ячейках или ячейках исход- 16 Часть 1. Поиск решений на электронных таблицах Быстрое начало 17
ных данных и заканчиваться в зависимой или целевой ячейке. Из целевой ячейки стрелки зависимостей не могут выходить. Таблица считается хорошо структурированной, если граф зависимостей наглядно иллюстрирует причинно-следственные связи между ячейками. «Запутанный» граф свидетельствует о плохой структуризации таблицы.
Дата добавления: 2015-06-27; Просмотров: 454; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |