КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример 5. Точность методов дисперсионного анализа (малая дисперсия внутри ячеек по сравнению с межгрупповой дисперсией)
Рассмотрим план 20 х 10 х 2 х 2 (между группами) х 3 (повторные измерения) с неодинаковым числом наблюдений в группах. То есть, имеем 800 групп и 3 зависимых переменных (файл данных ANOVA44 может быть получен от StatSoft). Матрица межгруппового плана при наибольшем порядке взаимодействия имеет 171 степень свободы. Ниже приведены результаты одномерного и многомерного дисперсионного анализа при взаимодействии наивысшего порядка. Пример 4. Многофакторный несбалансированный план дисперсионного анализа большого размера. Пример 3. Многофакторный несбалансированный план дисперсионного анализа среднего размера (с очень большими и очень малыми значениями). Пример 3.1. Для первой части этого теста данные из предыдущего примера (Пример 2, исходный диапазон данных: от 0,1 до 10) были преобразованы умножением каждой зависимой переменной на 100; затем был проведён дисперсионный анализ для этих преобразованных данных. Ниже приведены результаты одномерного и многомерного дисперсионного анализа при взаимодействии наивысшего порядка (ср. с Примером 2).
Пример 3.2. Для второй части этого теста данные из предыдущего примера (Пример 2, исходный диапазон данных: от 0,1 до 10) были преобразованы делением каждой зависимой переменной на 100; затем был проведён дисперсионный анализ для этих преобразованных данных. Ниже приведены результаты одномерного и многомерного дисперсионного анализа при взаимодействии наивысшего порядка (ср. с первой частью этого примера и Примером 2).
Проведём проверку точности вычислений в дисперсионном анализе: был создан файл данных с 10 наблюдениями, 5 группами (2 наблюдения на группу) и 12 зависимыми переменными. Группы в группирующей переменной IV были закодированы числами от 1 до 5. Зависимые переменные DVi (i принимает значения от 1 до 12) были заданы следующим образом: DVi = IV + (номер_наблюдения/10) i. Это привело к малой дисперсии внутри ячеек по сравнению межгрупповой дисперсией.
Дата добавления: 2015-06-28; Просмотров: 362; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |