КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Поверхности
ЛИНИЯ ЛИНИИ И ПОВЕРХНОСТИ План: 9.1. ЛИНИЯ Винтовая линия 9.2. ПОВЕРХНОСТЬ Поверхности линейчатые Поверхности линейчатые развертывающиеся Поверхности линейчатые неразвертывающиеся Поверхности нелинейчатые Поверхности параллельного переноса, вращения Поверхности вращения Поверхности винтовые ЛИНИЯ — это множество всех последовательных положений движущейся точки. Евклид: “Линия же — длина без ширины”. Прямая — разновидность линии, которая получается, если движущаяся точка не изменяет направления движения. Кривая — разновидность линии, которая получается, если движущаяся точка изменяет направление движения. Плоские линии — линии, все точки которых принадлежат одной плоскости. Пространственные линии (линии двоякой кривизны) — линии, все точки которых не принадлежат одной плоскости (например, линии пересечения поверхностей). Алгебраические линии определяются алгебраическими уравнениями в декартовой системе координат (окружность, эллипс, парабола, гипербола и др.). Трансцендентные линии описываются трансцендентными уравнениями (синусоида, спираль Архимеда и др.). Если алгебраическое уравнение линии n ‑й степени, то алгебраическая кривая считается n ‑го порядка, то есть ПОРЯДКОМ КРИВОЙ называют наибольшую степень ее уравнения. Геометрически порядок плоской кривой определяется наибольшим числом точек ее пересечения с прямой, лежащей в плоскости кривой, а для пространственной кривой — пересечением ее с плоскостью. Для алгебраических кривых это число точек всегда конечно. Для трансцендентных — бесконечно. Например, для эллипса (рис. 108) x 2/ a 2 + y 2/ b 2 = 1 имеем n = 2, т.е. это — кривая второго порядка.
Для синусоиды (рис. 109) y = sin x имеем n = ¥. Кривые бывают закономерные и незакономерные, как, например, горизонтали на географической карте. Винтовая линия Пространственная кривая, широко применяемая в технике. Цилиндрическая винтовая линия — пространственная кривая, получающаяся в результате двойного равномерного движения точки: вращения вокруг оси и поступательного движения вдоль прямой, параллельной этой оси (рис. 110). Рис. 110 p — шаг винтовой линии или расстояние между двумя ее соседними витками в направлении, параллельном оси i. Шаг определяет величину перемещения точки в направлении оси за один оборот этой точки вокруг оси. Проекция цилиндрической винтовой линии на горизонтальную плоскость проекций (при i ^ H) — окружность, на фронтальную плоскость проекций — синусоида. Отрезок [1o1o1] — развертка цилиндрической винтовой линии. jo — угол подъема винтовой линии. Цилиндрические винтовые линии бывают правые и левые. Основание для такого деления — направление движения точки, спускающейся по винтовой линии. Если проекция этого направления на плоскость, перпендикулярную к оси винтовой линии, совпадает с направлением движения часовой стрелки — винтовая линия ПРАВАЯ. В противном случае — ЛЕВАЯ. Коническая винтовая линия — пространственная кривая, получающаяся в результате двойного равномерного движения точки: вращения вокруг оси и поступательного движения вдоль прямой, пересекающейся с этой осью (рис. 111). Рис. 111 При i ^ H горизонтальная проекция конической винтовой линии — архимедова спираль, фронтальная — затухающая синусоида. С житейской точки зрения поверхность — внешняя сторона предметов. Так утверждают толковые словари. Евклид: “Поверхность есть то, что имеет только длину и ширину”. В технической практике принято рассматривать образование поверхности (как и линии) с позиций кинематики — движения. ПОВЕРХНОСТЬ — это множество последовательных положений движущейся линии — образующей. Образующая может сохранять свою форму или изменять ее — деформироваться. Закон перемещения образующей определяется направляющими линиями, по которым скользит образующая и характером движения образующей. Например, поверхности Каталана (названы так по имени бельгийского ученого, их исследовавшего), или — поверхности с плоскостью параллелизма. Прямолинейная образующая “a” перемещается — скользит по двум направляющим — “n” и “m”, оставаясь параллельной плоскости параллелизма a. Для изображения поверхности на чертеже, используют КАРКАС — множество линий, заполняющих поверхность так, что через каждую точку поверхности проходит в общем случае хотя бы одна линия каркаса. Проекции каркаса можно построить, если известен определитель поверхности. ОПРЕДЕЛИТЕЛЬ ПОВЕРХНОСТИ — совокупность независимых условий, однозначно задающих поверхность. Различают две части определителя: — геометрическая часть указывает на геометрические фигуры (точки, линии, поверхности), с помощью которых образовывается поверхность; обозначается (Г); — алгоритмическая (описательная) часть содержит указания о характере изменения образующей и законе ее перемещения; обозначается [ A ]. Таким образом, определитель пишется в следующей форме: F(Г)[ A ] Определитель находят, исходя из кинематического способа образования поверхности. Например, для поверхностей Каталана: F(m,n)[ a || a] Для задания этих поверхностей на эпюре Монжа достаточно указать проекции направляющих m и n и положение плоскости параллелизма a (рис. 112). Рис. 112 В геометрическую часть определителя не записывают образующую a. Поверхность линейчатая (образующая — прямая линия). Поэтому априорно известно, что а — прямая. В алгоритмической части содержится указание, что поверхность Каталана является поверхностью с плоскостью параллелизма. Поэтому в геометрическую часть определителя не записывают также и плоскость параллелизма.
Дата добавления: 2015-06-29; Просмотров: 465; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |