Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Производные высших порядков

 

Если функция имеет конечную производную в некотором промежутке , то эта производная сама представляет новую функцию от . Тогда эта функция в некоторой точке в свою очередь, имеет производную, конечную или нет. Эту производную называют производной второго порядка, или второй производной функции в точке , и обозначают одним из символов

Производная называется, в связи с этим, производной первого порядка или первой производной от .

Итак:

Таким же образом, производной третьего порядка или третьей производной функции называется производная от производной второго порядка. И так далее:

О.2.3. Производной - го порядка называется производная от производной - го порядка,

 

т.е.

Производные, начиная со второй, называются производными высших порядков.

Для некоторых элементарных функций можно вывести формулы нахождения производных любого порядка.

Примеры:

1) .

; ; ;…; .

2) .

; ; ;…; .

 

<== предыдущая лекция | следующая лекция ==>
И параметрически | Физический смысл
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 355; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.