Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция № 17


Тема: кратчайшие пути. Алгоритм Дейкстры

Основные вопросы, рассматриваемые на лекции:

1. Задача о кратчайшем пути на графе.

2. Определение алгоритма Дейкстры.

3. Выполнение алгоритма Дейкстры на примере графа.

Краткое содержание лекционного материала

1. Задача о кратчайшем пути на графе. Припишем всем ребрам графа веса – положительные числа. Кратчайший путь от вершины до вершины – это маршрут от до с минимальной суммой весов ребер маршрута. Надо найти все кратчайшие пути от данной вершины до всех остальных вершин.

Пример. Маршрутимеет сумму весов ребер 13, а маршруты и – 14. Значит, – кратчайший путь от до .

Задача о кратчайшем пути на графе решается алгоритмом, изобретенным нидерландским ученым Э. Дейкстрой в 1959 г.

Расстоянием от до называют сумму весов ребер по одному из маршрута от до .

2. Определение алгоритма Дейкстры. Каждой вершине ставим метку – минимальное известное расстояние от данной вершины .

Алгоритм работает пошагово – на каждом шаге он «посещает» одну вершину и пытается уменьшить метку вершины. Если все вершины посещены, алгоритм завершается.

Метка вершины равна 0. В начале метки остальных вершин предполагаются равными +¥. Иначе, из ещё не посещённых вершин выбирается вершина , имеющая минимальную метку. Рассматривают всевозможные маршруты с началом , в которых является предпоследним пунктом.

Для каждой не посещённой вершины , смежной с вершиной , находят сумму значения текущей метки и веса ребра, соединяющего и . Если полученная сумма s меньше значения t метки , то метку t заменяют меткой s.

Рассмотрев все не посещённые вершины, смежные с вершиной , вершина отмечается как посещенная, и повторяется шаг алгоритма.

4. Выполнение алгоритма Дейкстры на примере графа. Требуется найти кратчайшие расстояния от 1-й вершины до всех остальных.

Кружками обозначены вершины, линиями – ребра графа. В кружках обозначены номера вершин, над ребрами обозначена их вес – (или длина пути).

Рядом с каждой вершиной обозначена метка – длина кратчайшего пути в эту вершину из вершины 1.

Первый шаг. Рассмотрим шаг алгоритма Дейкстры для нашего примера. Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6.

7<¥, поэтому метка ¥ при вершине 2 заменяется меткой 7,

9<¥, поэтому метка ¥ при вершине 3 заменяется меткой 9,

14<¥, поэтому метка ¥ при вершине 6 заменяется меткой 14,

вершина 1 вычеркивается из числа посещенных вершин.

7+10=17>9, поэтому метка 9 при вершине 3 остается;

7+15=22<¥, поэтому метка ¥ при вершине 4 заменяется меткой 22;



вершина 2 вычеркивается из числа посещенных вершин.

9+11=20<22, поэтому метка 22 при вершине 4 заменяется меткой 20;

9+2=11<14, поэтому метка 14 при вершине 6 заменяется меткой 11;

вершина 3 вычеркивается из числа посещенных вершин.

11+9=20<¥, поэтому метка ¥ при вершине 5 заменяется меткой 20;

вершина 6 вычеркивается из числа посещенных вершин.

20+6=26>20, поэтому метка 20 при вершине 5 остается;

вершина 4 вычеркивается из числа посещенных вершин.

У вершины 5 не посещенных смежных вершин нет, поэтому вершина 5 также вычеркивается из числа не посещенных вершин.

Алгоритм заканчивает работу, так как нельзя больше обработать ни одной вершины. Кратчайшие пути – это последние метки при вершинах.

<== предыдущая лекция | следующая лекция ==>
Лекция № 16 | Лекция № 18

Дата добавления: 2014-01-03; Просмотров: 162; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.004 сек.