Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Критерий Вилкоксона-Манна-Уитни


Доверь свою работу кандидату наук!
1500+ квалифицированных специалистов готовы вам помочь

Данный критерий оперирует не с абсолютными значениями элементов двух выборок, а с результатами их парных сравнений. Например, существенно, что учащийся Петров решил больше задач, чем учащийся Иванов, а на сколько больше – не важно.

Возьмем две выборки3: {xi}i = 1…N и {yj}j=1…M и для каждого элемента первой4 выборки xi, i = 1…N, определим число ai элементов второй выборки, которые превосходят его по своему значению (то есть число таких yj, что yj > xi), а также число bi элементов второй выборки, которые по своему значению равны ему (то есть число таких yj, что yj = xi). Сумма

по всем N членам первой выборки называется эмпирическим значением критерия Манна-Уитни и обозначается U.

Алгоритм определения достоверности совпадений и различий для экспериментальных данных, измеренных в шкале отношений, с помощью критерия Вилкоксона-Манна-Уитни заключается в следующем:

1. Вычислить для сравниваемых выборок Wэмп – эмпирическое значение критерия Вилкоксона по формуле (4).

2. Сравнить это значение с критическим значением W0.05 = 1,96: если Wэмп ≤ 1,96, то сделать вывод: "характеристики сравниваемых выборок совпадают с уровнем значимости 0,05"; если Wэмп > 1,96, то сделать вывод "достоверность различий характеристик сравниваемых выборок составляет 95%".

 

(4) Wэмп =

 

3Ограничение на использование критерия Вилкоксона-Манна-Уитни следующее: каждая выборка должна содержать не менее трех элементов, если же в одной из выборок всего два элемента, то во второй их должно быть не менее пяти.

4 Какую выборку считать первой, а какую второй, не имеет значения, хотя при вычислениях удобнее первой считать ту выборку, в которой меньше членов

Математические основы, используемые в ЭС.

Некоторые математические условные обозначения:

" - всеобщность.

$ - существование.

@ - конгруэнтность (равные фигуры).

Þ - .следует

® - стремится к.

Û - эквивалентно.

АÇВ - множества А и В имеют общую часть, пересекаются.



АÈВ - объединение множеств А и В.

АÌВ - А является подмножеством множества В.

хÎА - х принадлежит множеству А.

хÏА - х не принадлежит множеству А.

А = {а, в, с} – множество состоит из элементов.

]а, в[ - интервал (открытый промежуток).

[АВ] - отрезок.

│АВ│ - длина отрезка.

О - пустое множество.

Основные логические связки:

А&В - А и В (АÙВ - коньюнкция).

АÚВ - А или В (дизьюнкция).

┐А - .отрицание (не А).

АÉВ - если А то В (импликация).

АÅВ - либо А либо В (исключающее или).

АºВ - А если и только если В.

События

Н - событие, когда гипотеза верна.

Е - событие, которое подтверждает или не подтверждает гипотезу.

Вероятности

Р(Н) - вероятность, что событие Н истинно.

Р(Е) - вероятность, что событие Е произошло.

Р(┐Н) - вероятность, что событие Н ложно (=1-Р(Н)).

Е1 и Е2 - независимы, если и только если Р(Е1 Ù Е2)=Р(Е1)*Р(Е2).

Р(Н:Е) - условная вероятность наступления Н при наступлении события Е.

Если события Н и Е независимы, то Р(Н:Е)=Р(Н). В общем случае Р(Н:Е)=Р(НÙЕ)/Р(Е). Аналогично Р(Е:Н)=Р(ЕÙН)/Р(Н), поэтому Р(Н:Е)=Р(Е:Н)*Р(Н)/Р(Е).

Теорема Байеса

Р(Н:Е)=Р(Е:Н)*Р(Н)/(Р(Е:Н)*Р(Н)+Р(Е:┐Н)*P(┐Н))

Нахождение Р(Н:Е) не всегда очевидна. Вероятность Р(Е:Н) часто более очевидна и теорема Байеса позволяет рассчитать значение Р(Н:Е) после появления нового события в результате эксперимента или диалога.

Априорные и апостериорные вероятности

Р(Н) - априорная вероятность истинности гипотезы Н без учета факта существования Е.

Р(Н:Е) - апостериорная вероятность гипотезы Н при осуществлении события Е.

Пример расчета: 1. Р(Н) – априорная вероятность гипотезы (или события) Н. 2. При осуществлении события Е1 запишется значение Р(Е1:Н). 3. С учетом теоремы Байеса проводится расчет Р(Н:Е1), т.е. вычисляется апостериорная вероятность Н. 4. Для рассмотрения Е2 проводится расчет по п.1 приняв значение Р(Н:Е1) равной Р(Н).

Шансы

Шансы в пользу наступления какого-то события можно вычислить, зная вероятность этого события: О(Е)=Р(Е)/(1-Р(Е)).

Аппроксимации

Р(АÙВ)=min(Р(А), Р(В)), Р(АÚВ)=max(Р(А), Р(В)). Эти выражения верны только при независимости Р и А.

Комбинаторика

Если имеется n событий и из них выбрано х, то число вариантов выбора равно: n!/(n-x)!*x!. Например 4!= 4*3*2*1=24.

Описательная статистика

Среднее, стандартное отклонение и т.д.

Распределения

Нормальное распределение и т.д.

Дискретные и непрерывные переменные

Дискретные – например, да/нет.

Поверхности

Плоские и т.д.

Проблема разделения

Проблема классификации объектов.

Обучающие алгоритмы

Параллельные и последовательные процедуры

Минимальные и максимальные значения

Стратегии поиска решений

Промежуточные выводы

Система комментирующая действия

Линейная интерполяция откликов

Формат данных

Структура ЭС по аналитической химии и метрологии

1. Справочник констант; явлений и свойств; справочник результатов эксперимента (спектров, анализов и др.); веществ, стандартных образцов и реактивов, ГОСТов.

2. Расчеты по математическим моделям для учебных, научных, производственных целей.

3. Методы, методики исследований.

4. Обработка и планирование эксперимента.

5. Теоретические данные (лекции, тесты, задачи). Химия - равновесия, кинетика, термодинамика, механизмы реакций; Физика; Математика; Аналитическая химия; Метрология.

6. Новая информация.

.

Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой
<== предыдущая лекция | следующая лекция ==>
Представление результата измерения в виде оценки среднего значения и ее стандартного отклонения | Модель коммуникационного процесса

Дата добавления: 2014-01-03; Просмотров: 591; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:
studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.031 сек.