КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теорема об изменении кинетического момента механической системы
Момент инерции твердого тела относительно некоторой оси равен сумме момента инерции тела относительно параллельной оси проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между этими осями. Теорема о моментах инерции твердого тела относительно параллельных осей (теорема Гюйгенса - Штейнера). Доказательство. Выберем: в центре масс С тела начато координат осей xyz. Возьмем в теле точку массы . Проведем на расстоянии d от оси z ось . Тогда момент инерции относительно этой оси
где - момент инерции тела, относительно оси, проходящей через центр масс;
; ,
т. к. (начало координат взято в центре масс). Тогда
.
Центробежные моменты инерции учитывают асимметрию в распределении масс, вычисляются относительно пары координатных осей но формулам
.
В отличие от осевых центробежные моменты инерции могут быть положительными, отрицательными или равными нулю. Это зависит от выбора начала осей координат и их направления. Ось, относительно которой центробежные моменты инерции, содержащие в своих индексах наименование этой оси, равны нулю, называется главной осью инерции тела.
Главная ось инерции, проходящая через центр масс тела, называется главной центральной осью инерции. Главными осями инерции твердого тела являются его оси симметрии. . Алгебраический момент количества движения материальной точки относительно некоторого центра О — скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля количества движения на расстояние h (перпендикуляр) от этого центра до линии, вдоль которой направлен вектор : Правило знаков: — при движении точки против хода часовой стрелки; - то же по ходу часовой стрелки
.
Векторный момент количества движения материальной точки относительно некоторого центра О — вектор, приложенный в этом центре и направленный перпендикулярно плоскости векторов и в ту сторону, откуда движение точки видно против хода часовой стрелки. Это определение удовлетворяет векторному равенству
. Моментом количества движения материальной точки относительно некоторой оси z называется скалярная величина , взятая со знаком (+) или (-) и равная произведению модуля проекции вектора количества движения на плоскость, перпендикулярную этой оси, на перпендикуляр h, опущенный из точки пересечения оси с плоскостью на линию, вдоль которой направлена указанная проекция:
lz.
Правило знаков: смотрим навстречу оси z — при движении точки против хода часовой стрелки - то же по ходу часовой стрелки. , если
Кинетический момент механической системы относительно центра. Для k - й точки системы — векторный момент. Для всей системы .
Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторого центра называется геометрическая сумма моментов количеств движения всех материальных точек системы относительно того же центра.
Кинетический момент относительно оси. Для k-й точки — алгебраическая величина. Для всей системы .
Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторой оси называется алгебраическая сумма моментов количеств движения всех материальных точек системы относительно той же оси.
Кинетический момент твердого тела, вращающегося вокруг неподвижной оси z с угловой скоростью .
Для k – й точки тела
.
Для всего тела
,
где — момент инерции тела относительно оси. Итак, .
Производная по времени от момента количества движения материальной точки относительно некоторого неподвижного центра равна моменту силы, действующей на точку, относительно того же центра. Доказательство. Пусть
.
— момент силы относительно точки О. Итак,
.
Следствие. Если линия действия равнодействующей приложенных к точке сил все время проходит через неподвижный центр, то момент количества движения материальной точки относительно этого центра остается постоянным.
Производная по времени от момента количества движения материальной точки относительно некоторой оси равна моменту силы, действующей на точку, относительно той же оси. Доказательство. Запишем в проекциях на оси декартовых координат, учитывая, что
и .
Тогда ,
где — моменты количества движения материальной точки относительно осей координат; , , — моменты силы относительно тех же осей. Следствие. Если момент равнодействующей сил, действующих на материальную точку, относительно некоторой оси равен нулю, то момент количества движения материальной точки относительно той же оси остается величиной постоянной.
Дата добавления: 2014-01-03; Просмотров: 1672; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |