КАТЕГОРИИ:
Законы распределения непрерывных величин
Рассмотрим некоторые законы распределения непрерывных случайных величин.
Экспоненциальным (или показательным) называется распределение непрерывной случайной величины,, плотность которой при х > 0 .
, (18)
а при x=0 f(x) = 0. Функцию показательного распределения можно получить из формулы .
Эта функция имеет вид (19)
Графики плотности и функции экспоненциального распределения показаны на рисунке.
Рисунок 1 Кривая и график функции экспоненциального распределения
Параметры экспоненциального распределения:
математическое ожидание случайной величины (20)
дисперсия
Дата добавления: 2014-01-03; Просмотров: 513; Нарушение авторских прав?; Мы поможем в написании вашей работы!
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
ПОИСК ПО САЙТУ: