Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Двойной интеграл, его свойства и вычисление





 

Пусть даны – замкнутая ограниченная область (компакт) и функция определенная в этой области. Произведем разбиение этой области на частичные подобласти с помощью конечного числа непрерывных кривых. Обозначим через диаметр разбиения т.е. число Возьмём произвольно точку и составим интегральную сумму (где площадь области ).

Определение 1.Если существует конечный предел интегральных сумм: и если этот предел не зависит от вида разбиения и выбора точек то его называют двойным интегралом от функции по области и обозначают

При этом функция называется интегрируемой по области

Отметим без доказательства следующие свойства:

1) Любая функция, непрерывная на компакте , интегрируема на этом компакте;

2) Если функция ограничена на компакте и имеет на нем разрывы разве что на конечном числе непрерывных кривых, то она интгрирума в

3) Двойной интеграл от произвольной ограниченной функци по ограничен-

ной кусочно непрерывной кривой равен нулю.

 

Геометрический смысл двойного интеграла.Рассмотрим цилиндрическое тело с нижним основанием , верхним основанием - поверхностью и с образующей боковой поверхности, параллельной оси Произведение есть объём цилиндра высоты и площадью основания , а интегральная сумма – суть объём ступенчатого тела, построенного по разбиению . Ясно, что обём тела приближенно равен объёму этого ступенчатого тела, т.е. Это равенство будет тем точнее, чем мельче разбиение , и при оно становится точным, т.е.

Здесь слева стоит двойной интеграл , поэтомут.е. двойной интеграл равен объёму цилиндрического тела

Двойные интегралы обладают свойствами, аналогичными свойствам одномерных интегралов. Сформулируем их, предполагая, что замкнутая ограниченная квадрируемая область в

10) (линейность) Если функции интегрируемы в , то и любая их линейная комбинация также интегрируема в , причем имеет место равенство

20) (аддитивность) Если область разбита на две непересекающиеся подобласти и с помощью непрерывной кривой и если функция интегрируема в , то она интегрируема и в каждой из областей и (и наоборот). При этом имеет место равенство

30) (монотонность) Если функции интегрируемы в и имеет место неравенство то

40) Если функция интегрируема в и имеют место неравенства

то

где площадь области

50) (теорема о среднем) Если функция непрерывна в замкнутой ограниченной области то существует точка такая, что

Геометрически это означает, что если то объём цилиндрического тела с верхним основанием и с нижним основанием равен объёму некоторогоого параллелепипеда с тем же основанием и высотой

При вычислении двойных интегралов используются повторные интегралы, которые имеют следующий смысл:



Теорема 1(Фубини).Если прямоугольник и если функция кусочно непрерывна в то

Теорема 2(вычисление двойного интеграла в криволинейной области). Если имеет вид

где функции непрерывны на отрезке и если функция непрерывна в то

Доказательство. Обозначим , и рассмотрим функцию

Эта функция кусочно непрерывна в , поэтому применима теорема Фубини:

Так как

то Теорема доказана.

Замечание 1. В случае области типа

и непрерывности функции и функций имеет место равенство

Заметим, что области которые участвуют в формулах (1) и (2), являются правильными областями. Более точно: область называется правильной в направлении оси если любая прямая, параллельная оси , пересекает границу области не более чем в двух точках. Если область – неправильная, то её разбивают на правильные подобласти с помощью конечного числа непрерывных кривых и применяют к соответствующему интегралу теорему об аддитивности интеграла.

Замечание 2. Если область является правильной как в направлении оси так и в направлении оси то имеет место равенство

(в предположении, что все участвующие здесь функции непрерывны в соответствующих областях). Таким образом, в случае области описанного типа можно изменять порядок интегрирования. Этим часто пользуются, желая упростить вычисление двойного интеграла.

Пример 1(Кузнецов Л.А. Типовые расчеты). Изменить порядок интег-рирования

Решение.Сначала нарисуем область , по которой берется соответствующий двойной интеграл. Она находится между двумя параболами и Изменяя порядок интегрирования, найдём , что Поясним, как получен этот результат. Спроектируем область на ось получим отрезокЗначит, пределы внешнего интеграла – суть числа и Теперь зафиксируем произвольно и проведем через точку луч в направлении оси Он пересечет нижнюю границу области в точке с ординатой (это будет нижняя граница внутреннего интеграла), а верхнюю границу области в точке с ординатой (это будет верхняя граница внутреннего интеграла).

Пример 2 (Кузнецов Л.А. Типовые расчеты). Вычислить интеграл

 





Дата добавления: 2014-01-03; Просмотров: 704; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:

  1. III. ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА СЕРДЕЧНОЙ МЫШЦЫ.
  2. N Прозрачный матрикс со свойствами геля.
  3. N С возрастом в фибробластах прекращается синтез ГП, нарушаются поперечные микрофибриллярные связи и эластические волокна утрачивают свои свойства (упругость и эластичность).
  4. V. Преступления с двойной формой вины
  5. Атмосфера Земли и ее свойства. Влияние параметров атмосферы на движение подвижных объектов воздушного базирования.
  6. Бетоны и растворы 2.1 Бетоны и их физико–механические свойства
  7. ВЗАИМНОЕ ВЛИЯНИЕ АТОМОВ В МОЛЕКУЛАХ БИООРГАНИЧЕСКИХ СОЕДИЕНИЙ. ЭЛЕКТРОННЫЕ ЭФФЕКТЫ ЗАМЕСТИТЕЛЕЙ. КИСЛОТНЫЕ И ОСНОВНЫЕ СВОЙСТВА БИООРГАНИЧЕСКИХ МОЛЕКУЛ
  8. Виды грунтов и их свойства
  9. Виды и свойства информации
  10. Виды и свойства ощущений
  11. Влияние легирующих элементов на свойства сплавов
  12. Влияние легирующих элементов на структуру и механические свойства сталей

studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.005 сек.