Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тройной интеграл, его свойства и вычисление


Пусть – замкнутая ограниченная (кубируемая) область (тело) в и функция определена в . Произведем разбиение этой области на частичные подобласти с помощью конечного числа непрерывных поверхностей. Обозначим через диаметр разбиения т.е. число Возьмём произвольно точку и составим интегральную сумму (где объём области ).

Определение 2.Если существует конечный предел интегральных сумм: и если этот предел не зависит от вида разбиения и выбора точек то его называют двойным интегралом от функции по области и обозначают При этом функция называется интегрируемой в области

Механический смысл тройного интеграла.Если плотность тела в точке то произведение приближенно равно массе тела , а интегральная сумма приближенно равна массе всего тела , т.е. Ясно, что это равенство будет тем точнее, чем мельче разбиение , и при оно становится точным:

Таким образом, тройной интеграл по телу от плотности равен массе тела

Тройные интегралы обладают свойствами, аналогичными свойствам двойных интегралов. Сформулируем их, предполагая, что замкнутая ограниченная кубируемая область в

10) (линейность) Если функции интегрируемы в , то и любая их линейная комбинация

также интегрируема в , причем имеет место равенство

20) (аддитивность) Если область разбита на две непересекающиеся подобласти и с помощью непрерывной поверхности и если функция интегрируема в , то она интегрируема и в каждой из областей и (и наоборот). При этом имеет место равенство

30) (монотонность) Если функции интегрируемы в и имеет место неравенство то

40) Если функция интегрируема в и имеют место неравенства

то

гдеобъём области

50) (теорема о среднем) Если функция непрерывна в замкнутой ограниченной области то существует точка такая, что

И, наконец, отметим, что любая непрерывная и кусочно непрерывная в замкнутой ограниченной (кубируемой) области функция интегрируема в

Теорема 3(Фубини).Если

параллелепипед и если функция кусочно непрерывна в то

причем здесь порядок интегрирования может быть изменён как-угодно.

Теорема 4(вычисление тройного интеграла в криволинейной области). Если имеет вид

где функции непрерывны на отрезке а функции непрерывны в области и если функция непрерывна в то

Доказательство этой теоремы фактически повторяет доказательство теоремы 2 и опирается на теорему Фубини. Заметим, что если область является правильной в направлении всех трех осей, то можно изменять порядок интегрирования.

 

Пример 4 (Кузнецов Л.А. Типовые расчеты). Вычислить интеграл где

Решение.Нарисуем проекцию области на плоскость Границу образуют прямые Сначала расставим пределы по и используя область Затем возьмем произвольно точку и проведем через неё луч в направлении оси Она пересечет нижнюю границу области в точке а верхнюю границу этой области – в точке . Значит, нижний предел интеграла по будет а верхний предел по будет В результате получим



 

<== предыдущая лекция | следующая лекция ==>
Решение. Немного позже будет использоваться формула | Двойной интеграл в полярных координатах

Дата добавления: 2014-01-03; Просмотров: 3453; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:

  1. III. ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА СЕРДЕЧНОЙ МЫШЦЫ.
  2. N Прозрачный матрикс со свойствами геля.
  3. N С возрастом в фибробластах прекращается синтез ГП, нарушаются поперечные микрофибриллярные связи и эластические волокна утрачивают свои свойства (упругость и эластичность).
  4. Атмосфера Земли и ее свойства. Влияние параметров атмосферы на движение подвижных объектов воздушного базирования.
  5. Бетоны и растворы 2.1 Бетоны и их физико–механические свойства
  6. ВЗАИМНОЕ ВЛИЯНИЕ АТОМОВ В МОЛЕКУЛАХ БИООРГАНИЧЕСКИХ СОЕДИЕНИЙ. ЭЛЕКТРОННЫЕ ЭФФЕКТЫ ЗАМЕСТИТЕЛЕЙ. КИСЛОТНЫЕ И ОСНОВНЫЕ СВОЙСТВА БИООРГАНИЧЕСКИХ МОЛЕКУЛ
  7. Виды грунтов и их свойства
  8. Виды и свойства информации
  9. Виды и свойства ощущений
  10. Влияние легирующих элементов на свойства сплавов
  11. Влияние легирующих элементов на структуру и механические свойства сталей
  12. Влияние углерода, легирующих элементов, примесей на свойства сталей

studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.004 сек.