КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Интервальные оценки. Доверительный интервал. Нахождение доверительных интервалов для математического ожидания и дисперсии нормального распределения случайной величины
В ряде задач требуется не только найти с помощью статистических данных точечную оценку для параметра распределения, но и оценить ее точность и надежность, так как в силу случайности приближенная замена на может привести к серьезным ошибкам. Для точности оценки в математической статистике используют доверительные интервалы. Пусть для параметра распределения случайной величины Х получена несмещенная оценка . Задаем достаточно высокую вероятность (например, ) и находим такое значение e > 0, для которого . (9) Равенство (9) можно переписать в другом виде: . (10) Последнее равенство (10) можно истолковать следующим образом: неизвестное значение параметра а с вероятностью попадает в интервал . Но так как неизвестное значение параметра является неслучайной величиной, оценка этого параметра – случайной, то равенство (10) можно истолковать более точно следующим образом: интервал с высокой вероятностью покрывает неизвестный параметр . Интервал называется доверительным интервалом; центр его находится в точке , радиус его e. Вероятность называется доверительной вероятностью или надежностью. Итак, доверительный интервал – это интервал с центром в точке и радиусом e, который с высокой вероятностью (надежностью) покрывает неизвестный параметр. Найти доверительный интервал – это значит, по статистическим данным найти центр интервала и радиус его e> 0. 1. Доверительный интервал для оценки математического ожидания нормального распределения случайной величины с известным s Пусть случайная величина X имеет нормальное распределение с неизвестным математическим ожиданием и известной дисперсией s2. Пусть произведено n независимых опытов и на основании статистических данных получено выборочное среднее: Задаем достаточно высокую доверительную вероятность g. Требуется построить доверительный интервал . Прежде всего, заметим, что случайная величина также имеет нормальное распределение . Действительно, ; Вероятность попадания случайной величины с нормальным законом распределения в симметричный интервал с центром в точке и радиусом ε равен (11) где – функция Лапласа. Обозначая, имеем Ф (t) = g/2. Затем по табл. 4 приложения находим t по значению Ф (t) = g/2; отсюда находится : . Таким образом, доверительный интервал имеет вид . (12) Задача 1. Случайная величина X имеет нормальное распределение с известным s=3. Найти доверительный интервал для оценки неизвестного математического ожидания а по его выборочному среднему , если известны объем выборки и . Решение. Имеем на основании формулы (11): t = , . Из табл. 4 t = 1,96. Тогда . Таким образом, .
2. Доверительный интервал для оценки математического ожидания В отличие от предыдущего, случайная величина X имеет нормальное распределение N (a,s) с неизвестным s. Пусть произведено n независимых испытаний, построены выборочная средняя и “исправленная” выборочная дисперсия S 2. Требуется построить доверительный интервал для оценки математического ожидания. Рассмотрим случайную величину . (13) Распределение (13) является t – распределение или распределением Стьюдента с степенями свободы. Действительно, по определению, если – случайная величина с нормальным распределением , а V – случайная величина, распределенная по закону c2 с k степенями свободы, то случайная величина распределена по закону Стьюдента с k степенями свободы. Случайная величина распределена по нормальному закону . Случайная величина (14) распределена также по нормальному закону (как линейная функция относительно нормального аргумента ) с законом . Известно, что случайная величина (15) распределена по закону c2 с степенями свободы. Поэтому случайная величина T распределена по закону Стьюдента. С ростом степеней свободы распределение Стьюдента приближается к нормальному и уже при практически не отличается от него. Следовательно, при оценке неизвестных параметров по выборке малого объема используют распределение Стьюдента (13). При построении доверительного интервала для математического ожидания речь идет о вероятности (9). Имеем или с учетом (13) . (16) Обозначая , получаем . Таким образом, имеем . (17) Значение определяется по вероятности из табл. 5 приложения распределения Стьюдента. Затем, принимая во внимание, что , находим . Таким образом, доверительный интервал для оценки математического ожидания с неизвестным s имеет вид . (18) Задача 2. Случайная величина X имеет нормальное распределение. По выборке объемом n = 15 найдены выборочная средняя , “исправленное” среднее квадратическое отклонение . Определить интервальную оценку математического ожидания с доверительной вероятностью . Решение. По табл. 5 приложения находим . Тогда . По формуле (18) получим доверительный интервал . Замечание. Пусть производится n независимых равноточных измерений некоторой физической величины, истинное значение которой неизвестно и которая имеет нормальное распределение. Пусть – результаты отдельных измерений, рассматриваемые как независимые случайные величины с одним и тем распределением, и имеют одно и то же математическое ожидание (истинное значение измеряемой величины), одинаковые дисперсии s2 (измерения равноточные). В этом случае истинное значение измерений физической величины оценивается с помощью среднего выборочного , для которого можно построить доверительный интервал (с неизвестным s) по методу, указанному в п. 2. Задача 3. По данным 16-ти независимых равноточных измерений физической величины найдено выборочное среднее и “исправленное” среднее квадратическое отклонение . Требуется оценить истинное значение случайной величины с надежностью . Решение. Истинное значение измеряемой величины равно ее математическому ожиданию. Поэтому задача сводится к оценке математического ожидания (при неизвестном s) для нормального распределения с помощью доверительного интервала. Доверительный интервал находится с помощью формулы (18). Используя табл. 5 приложения по =0,95 и , находим . Имеем , .
3. Доверительные интервалы для оценки среднего квадратического отклонения s нормального распределения Пусть исследуемая случайная величина X генеральной совокупности распределена по закону N (a,s). По статистическим данным найдено “исправленное” среднее квадратическое отклонение S. Требуется найти для него доверительный интервал с надежностью g. Требуется найти такое e > 0, чтобы выполнялось равенство . (19) Неравенство |s-S|<e с помощью ряда равносильных преобразований можно переписать в виде . Поэтому равенство (19) можно переписать в виде P (|s-S|<e)= P (<c<) = g, (20) где . (21) Случайная величина (19) распределена по закону (имеет - распределение) с степенями свободы. Плотность вероятности c-распределения с (n -1) степенями свободы имеет вид Тогда равенство (20) можно переписать в виде. Из этого уравнения по заданным и можно найти; для этого используется табл. 6 вероятности попадания случайной величины с - распределением в заданный интервал, зависящий от . После нахождения доверительный интервал определяется равенством . (22) Задача.4. Количественный признак генеральной совокупности распределен по нормальному закону N (a,s). По выборке объема найдено “исправленное” среднее квадратическое отклонение . Найти доверительный интервал для этой оценки с надежностью . Решение. По табл. 6 приложения по и найдем . Доверительный интервал имеет вид I g = (1,24(1–0,44); 1,24(1+0,44)) = (0,69;1,79). Замечание. В теории измерений принято точность измерений (точность измерительной системы) характеризовать с помощью s. Для оценки s используют “исправленное” среднее квадратическое отклонение . Поэтому для оценки точности измерений применяется доверительный интервал для , теория построения которого изложена выше.
Таблица П4 Таблица значений функции
Таблица П4 Таблица значений функции
Окончание таблицы П4
Таблица П5 Таблица значений tg= t (g, n)
Таблица П6 Таблица значений q= q (g, n)
Таблица П7 Критические точки распределения c2
Таблица П8
Дата добавления: 2014-01-03; Просмотров: 8361; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |