Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Экспоненциальный многочлен Джулии Робинсон





Экспоненциальные многочлены отличаются от обычных тем, что в них показателями степени могут быть не только конкретные натуральные числа, но и линейные многочлены от переменных с натуральными коэффициентами, то есть многочлены вида

a1x1 + a2x2 + ... + ak xk + b,

 

где a1, a2, ..., ak , b — целые неотрицательные числа.

Простейшими примерами экспоненциальных многочленов от переменной n являются правые части формул (8) и (9).

В дальнейшем мы всегда будем предполагать, что все встречающиеся у нас переменные принимают целые положительные значения.

В 1952 году американский математик Джулия Робинсон опубликовала следующий замечательный результат:

Существует экспоненциальный многочлен R(x0, ..., xk ), такой, что

  • любое его положительное значение при целых положительных значениях переменных является простым числом;
  • любое простое число можно представить в таком виде.

В результате получается такая «формула для простых чисел»:

p = R(x0, ..., xk ). (10)

 

Эта формула замечательна вот чем. Во-первых, в неё входят только целые числа, и потому, в отличие от формул Миллса, Райта и им подобных, формула Джулии Робинсон может быть выписана явно. Во-вторых, она задаёт все простые числа, а не только какие-то избранные из них, в отличие от всех рассмотренных выше формул. В-третьих, хотя формула (10) задаёт и не только простые числа, у нас есть очень простой способ отсеивания «лишних» чисел: каждое не простое значение R при целых положительных значениях неизвестных не превосходит нуля. Этим формула Джулии Робинсон выгодно отличается от формул (8) и (9), а также и от только что рассмотренных полиномиальных формул .

Доказательство Джулии Робинсон совершенно элементарно. Ниже излагаются его основные идеи.





Дата добавления: 2014-01-03; Просмотров: 740; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.001 сек.