Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Типы неопределенностей и методы их раскрытия


 

Часто при вычислении пределов какой-либо функции, непосредственное применение теорем о пределах не приводит к желаемой цели. Так, например, нельзя применять теорему о пределе дроби, если ее знаменатель стремится к нулю. Поэтому часто прежде, чем применять эти теоремы, необходимо тождественно преобразовать функцию, предел которой мы ищем. Рассмотрим некоторые приемы раскрытия неопределенностей.

 

I. Неопределенность вида .

Пример. Вычислить предел

При подстановке вместо переменной х числа 5 видим, что получается неопределенность вида . Для ее раскрытия нужно разложить числитель на множители: (х225 = (х–5)∙(х+5)), получили общий множитель (х–5), на который можно сократить дробь. Заданный предел примет вид: . Подставив х=5, получим результат.

= = = =5+5 =10

 

Пример. Вычислить предел

При подстановке вместо переменной х числа -2 видим, что получается неопределенность вида . Для ее раскрытия разложим числитель и знаменатель на множители и сократим на общий множитель х+2. В результате получим новый предел, знаменатель которого при подстановке вместо переменной х числа -2 не равен нулю. Этот предел легко вычисляется по теоремам. Таким образом, неопределенность будет раскрыта.

 

 

II. Неопределенность вида .

Для раскрытия этой неопределенности нужно каждое слагаемое числителя и знаменателя разделить на переменную в наибольшей степени и учитывая, что величина обратная бесконечно большой величине есть бесконечно малая величина, раскроем исходную неопределенность.

Пример. Вычислить предел

Здесь числитель и знаменатель не имеют предела, т.к. оба неограниченно возрастают. В этом случае имеем неопределенность вида . Для ее раскрытия разделим каждое слагаемое на переменную в наибольшей степени, т.е. на х4. Получим:

 

= =

Величины являются бесконечно малыми при и их пределы равны нулю. Следовательно, искомый предел равен .

 

Пример. Вычислить предел

Имеем неопределенность вида . Аналогично предыдущему примеру разделим числитель и знаменатель на х5. Получим:

Пример. Вычислить предел

Имеем неопределенность вида . Разделим числитель и знаменатель на х2. Получим:

<== предыдущая лекция | следующая лекция ==>
Бесконечно большие функции и их связь с бесконечно малыми | Сравнение бесконечно малых функций

Дата добавления: 2014-01-03; Просмотров: 578; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.