Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение D х к переменной х. Тогда величина D xz = f (x + D x, y) – f (x, y) называется частным приращением функции по х.
Можно записать
.
Тогда называется частной производной функции z = f(x, y) по х.
Обозначается:
Аналогично определяется частная производная функции по у.
Геометрическим смыслом частной производной (допустим ) является тангенс угла наклона касательной, проведенной в точке N0(x0, y0, z0) к сечению поверхности плоскостью у = у0.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление