Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интегрирование по частям. Этот способ основан на известной формуле производной произведения:




 

Этот способ основан на известной формуле производной произведения:

(uv)¢ = u¢v + v¢u,

где u и v – некоторые функции от х.

В дифференциальной форме: d(uv) = udv + vdu

 

Проинтегрировав, получаем: , а в соответствии с приведенными выше свойствами неопределенного интеграла: или

 

.

Получили формулу интегрирования по частям, которая позволяет находить интегралы многих элементарных функций.

Этот метод применяется, когда подынтегральная функция имеет вид: , где - это многочлен степени п, а является показательной, тригонометрической, обратной тригонометрической или логарифмической функцией.

 

1. Если - показательная или тригонометрическая функция (т.е. имеем интегралы вида , , ), то для того чтобы найти эти интегралы, нужно сделать замену и применить формулу интегрирования по частям n раз.

 

2. Если- логарифмическая или обратная тригонометрическая функция (т.е. имеем интегралы вида , , , , ) то для того, чтобы найти эти интегралы нужно сделать замену: , .

 

3. Интегралы вида , (a, b — числа) вычисляются двукратным интегрированием по частям.

 

Пример. Вычислить .

Данный интеграл относится к 1 типу.

Положим , ; тогда , . Найдем . Подставим в формулу интегрирования по частям:

.

Пример. Вычислить .

Данный интеграл относится ко 2 типу

Положим , ; тогда , .

.

Пример. Вычислить

Данный интеграл относится ко 2 типу.

, , ,

=

Пример. Вычислить

Интеграл 1 типа. Имеем , ,

=

Пример. Вычислить

, , ,

=

 

Пример. Вычислить

, , ,

= =

.

Пример. Вычислить

Пример. Вычислить

 

Видно, что в результате повторного применения интегрирования по частям функцию не удалось упростить к табличному виду. Однако последний полученный интеграл ничем не отличается от исходного. Поэтому перенесем его в левую часть равенства.




Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 428; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.