Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сложное колебание и его гармонический спектр




Как видно из § 5.3, сложение колебаний приводит к более сложным формам колебаний. Для практических целей бывает не­обходимой противоположная операция: разложение сложного ко­лебания на простые, обычно гармонические, колебания.

Ж.. Фурье показал, что периодическая функция любой сложнос­ти может быть представлена в виде суммы гармонических функций, частоты которых кратны частоте сложной периодической функции.

Такое разложение периодической функции на гармонические составляющие и, следовательно, разложение различных периоди­ческих процессов (механические, электрические и т. п.) на гармо­нические колебания называется гармоническим анализом. Су­ществуют математические выражения, которые позволяют найти составляющие гармонические функции. Автоматически гармони­ческий анализ колебаний, в том числе и для целей медицины, осуществляется специальными приборами — анализаторами.

Совокупность гармонических колебаний, на которые разложе­но сложное колебание, называется гармоническим спектром сложного колебания.

Гармонический спектр удобно представить как набор частот (или круговых частот) отдельных гармоник совместно с соответст­вующими им амплитудами. Наиболее наглядно такое представле­ние выполняется графически. В качестве примера на рис. 5.16, а изображены графики сложного колебания (кривая 4) и составляю­щих его гармонических колебаний (кривые /, 2 и 3); на рис. 5.16, б показан гармонический спектр, соответствующий этому примеру.

Гармонический анализ позволяет достаточно детально описать и проанализировать любой сложный колебательный процесс, он находит применение в акустике, радиотехнике, электронике и других областях науки и техники.

 




Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 2071; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.