Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнение механической волны




Механической волной называют механические возмуще­ния, распространяющиеся в пространстве и несущие энер­гию.

Различают два основных вида механических волн: упругие волны (распространение упругих деформаций) и волны на по­верхности жидкости.

Упругие волны возникают благодаря связям, существующим между частицами среды: перемещение одной частицы от положе­ния равновесия приводит к перемещению соседних частиц. Этот процесс распространяется в пространстве с конечной скоростью.

Уравнение волны выражает зависимость смещения колеблю­щейся точки (s), участвующей в волновом процессе, от координа­ты ее равновесного положения и времени. Для волны, распростра­няющейся вдоль направления ОХ, эта зависимость записывается в общем виде:

Если s и х направлены вдоль одной прямой, то волна продоль­ная, если они взаимно перпендикулярны, то волна поперечная.

Выведем уравнение плоской волны. Пусть волна распространя­ется вдоль оси ОХ (рис. 5.20) без затухания так, что амплитуды колебаний всех точек одинаковы и равны А. Зададим колебание точки с координатой х = 0 (источник колебаний) уравнением

 

До точки с некоторой произвольной координатой х возмуще­ние от начала координат дойдет через время t, поэтому колебания этой точки запаздывают:

(5.47)

Так как время и скорость распространения волны связаны за­висимостью то вместо (5.47) получаем

(5.48)

Это и есть уравнение плоской волны, которое позволяет опре­делить смещение любой точки, участвующей в волновом процес­се, в любой момент времени. Аргумент при косинусе j= w (t - x/u) называют фазой волны. Множество точек, имеющих одновремен­но одинаковую фазу, называют фронтом волны. Для рассмот­ренного случая фронтом волны будет плоскость х = const (плос­кость, перпендикулярная оси ОХ), всем точкам которой соответ­ствует одновременно одинаковая фаза. Отсюда и название — плоская волна.

Скорость распространения фиксированной фазы колебаний на­зывают фазовой. Предположим, что Про­дифференцировав это равенство, получим откуда

Следовательно, скорость распространения фиксированной фазы колебаний и есть скорость распространения волны.

Кроме фазовой скорости различают еще групповую скорость, которую вводят тогда, когда реальная волна не может быть пред­ставлена одним гармоническим уравнением (5.48), а является суммой группы синусоидальных волн.

Длиной волны называют расстояние между двумя точка­ми, фазы которых в один и тот же момент времени отлича­ются на 2p. Она равна расстоянию, пройденному волной за пери­од колебания:

(5.49)

Уравнение волны (5.48) — одно из возможных решений общего диф­ференциального уравнения с частными производными, описывающего процесс распространения возмущения в среде. Такое уравнение называ­ют волновым. Чтобы иметь представление о волновом уравнении, продифференци­руем (5.48) дважды по времени t и дважды по координате х:.

 

(5.50)

(5.51)

 

Сравнивая вторые производные в (5.50) и (5.51), получаем одномерное волновое уравнение

(5.52)

 

Решение уравнений с частными производными выходит за пределы данного курса. Одно из решений (5.48) известно. Однако важно отметить следующее. Если изменение какой-либо физической величины: механи­ческой, тепловой, электрической, магнитной и т. д. — отвечает уравне­нию (5.52), то это означает, что соответствующая физическая величина распространяется в виде волны со скоростью u.




Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 8968; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.