Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Зображення похідних та інтегралів синусоїдних струмів

Нехай миттєве значення струму i = Im sin(wt + yi).

Комплекс цього струму

, тобто і ® İm. (5.7)

Візьмемо похідну струму:

= wIm sin(wt + yi + 90°).  

Зобразимо похідну струму комплексом:

(5.8)
тобто

 

Візьмемо інтеграл струму:

.  

Зобразимо інтеграл струму комплексом:

(5.9)
тобто

 

Таким чином, похідна струму зображується комплексом струму, помноженим на jw, а інтеграл струму – комплексом струму, діленим на jw.

<== предыдущая лекция | следующая лекция ==>
Множення та ділення комплексних величин. Добуток двох комплексів являє собою новий комплекс, модуль якого дорівнює добутку модулів, а аргумент – алгебраїчній сумі аргументів перемножених | Закон Ома в комплексній формі
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 285; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.