КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Конечный продукт + внутрипроизводственное потребление
запишется в виде уравнения , или, в матричных обозначениях, в виде . Это уравнение называется уравнением межотраслевого баланса (балансовой моделью или моделью Леонтьева). Теперь количество продукции , которое необходимо произвести, чтобы обеспечить заданное количество конечного продукта , получается как решение матричного уравнения Û . Матрица называется матрицей коэффициентов полных производственных затрат. Разница между полными производственными затратами и прямыми производственными затратами называется косвенными затратами. Таким образом, матрица есть матрица коэффициентов косвенных производственных затрат. Чистый продукт отрасли есть ее валовой продукт минус то количество продукции, которое было затрачено на производство этого валового продукта во всех отраслях: , . Отметим, что здесь неявно предполагается, что продукты различных отраслей можно складывать, то есть они измеряются в единых единицах измерения, например, в трудо-часах. Нетрудно видеть, что суммарный конечный продукт и суммарный чистый продукт отраслей равны: . Рассмотрим теперь механизм образования себестоимости продукции. Предположим, что для производства одной единицы (валовой) продукции –й отрасли необходимо затратить единиц –го сырья, . Сырье понимается в широком смысле слова: закупаемые материалы, электроэнергия, производственные фонды, труд и т.д. Обозначим — ‑матрицу удельных коэффициентов прямых затрат сырья. Тогда полные затраты –го вида сырья, необходимые для производства валового продукта , равны . Следовательно, полные затраты всех видов сырья, необходимого на выполнение производственного задания, есть вектор . Определим затраты сырья в пересчете на 1 единицу конечной продукции –й отрасли. С учетом соотношения получаем . Таким образом, матрица есть матрица коэффициентов полных затрат сырья. Если известен вектор цен за одну единицу сырья каждого вида, , то полные затраты на производство конечного продукта равны , а себестоимость производства одной единицы продукции -й отрасли равна , где - элемент матрицы , стоящий в -й строке, -м столбце. Пример 1. Химическое предприятие состоит из двух основных и одного вспомогательного цехов, каждый из которых выпускает один вид продукции. Прямые затраты aij продукции i ‑ го цеха на производство 1 единицы продукции j ‑ го цеха, а также величины конечного продукта , представлены таблицей.
Определить: 1) коэффициенты полных затрат; 2) валовой выпуск для каждого цеха; 3) производственную программу цехов (распределение валового продукта на конечный продукт и внутрипроизводственное потребление раздельно по цехам); 4) коэффициенты косвенных затрат. Решение. Выпишем матрицу прямых производственных затрат.
Определим матрицу полных производственных затрат.
Получаем:
Для вычисления матрицы находим присоединенную матрицу, то есть матрицу, состоящая из алгебраических дополнений элементов матрицы . ; ; ;; ;;;;. Записав алгебраические дополнения элементов строк в соответствующие столбцы, и поделив на определитель матрицы , получим
.
Определим валовой продукт каждого цеха. Поскольку конечный продукт есть , валовой продукт находим по формуле
.
Рассмотрим распределение валового продукта цехов на конечный продукт и продукт, потребляемый в процессе производства в каждом из цехов. Для первого цеха из уравнения баланса получаем: Û Следовательно, произведенные 1273.39 единиц продукции 1-го цеха распределяются следующим образом: 1000 единиц составляют конечный продукт, и единицы продукции потребляются во втором цехе. Внутрипроизводственное потребление продукта 1-го цеха в самом 1-м цеху и в цехе №3 равны 0. Для второго цеха получаем: Таким образом, 1093.58 единицы продукции второго цеха дают 500 единиц конечного продукта, единицы потребляются в цехе №1, единицы потребляются в процессе производства в цехе №2, и, наконец, единицы потребляются в цехе №3. Суммарное внутрипроизводственное потребление продукта 2-цеха составляет 254.68+136.0+202,2=593,58 единицы. Составим баланс для третьего цеха: . Имеем 1500 единиц конечного продукта, продукта третьего цеха потребляется во втором цеху, единиц потребляется в самом цехе №3, и 0 единиц потребляется в первом цеху. Суммарное внутрипроизводственное потребление составляет 218.72+303.30=522.02 единицы продукции третьего цеха. Матрица коэффициентов косвенных затрат имеет вид
.
Дата добавления: 2014-01-03; Просмотров: 1524; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |