Студопедия

КАТЕГОРИИ:



Мы поможем в написании ваших работ!

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мы поможем в написании ваших работ!

Отношения и отображения как соответствия между элементами множеств. Мощность множества





Пусть А и В – два множества.

Определение1. Говорят, что задано отображение множества А во множество В, если каждому элементу a A поставлен в соответствие некоторым способом элемент b В.

f : А В , где f – закон, правило.

А
В

 

 


А В

А
В
Определение 2. Отображение f : А→ В называется суръективным или отображением «на», если для любого b В существует a A, такой что b = f (a). В этом случае каждый элемент b В соответствует какому-либо элементу множества А ( все места во множестве В заняты).

 

Определение 3. Отображение f : А→ В называется инъективным или отображением «в», если разным значениям a1 и a2 : a1a2 соответствуют разные значения f (a1) и f (a2): f (a1) ≠ f (a2) (во множестве В есть свободные места).

А


В

Определение 4. Отображение f : А→ В называется биективным или взаимно однозначным, если оно является одновременно отображением «в» и отображением «на», т.е. каждому a A ставится в соответствие один элемент b В, и каждый b В соответствует одному и только одному элементу a A.

Если А и В – числовые множества, то отображение f : А→ В называется функцией, множество А – областью определения, а множество В – множеством значений.

Определение 5. Два множества называются эквивалентными, если между их элементами можно установить взаимно однозначное соответствие.

Например, эквивалентными множествами являются множество действительных чисел R и множество точек на прямой.

Два конечных множества эквивалентны тогда и только тогда, когда они имеют одинаковое число элементов.

В бесконечных множествах пересчитать все элементы невозможно. При сравнении бесконечных множеств нам поможет отношение эквивалентности. Оно выделяет среди всех множеств (как конечных, так и бесконечных) те множества, которые обладают общим свойством (это свойство назовем мощностью множества). Понятие мощности ввел в теорию множеств немецкий математик Георг Кантор.



«Мощность множества» является распространением понятия «количество элементов множества» на бесконечные множества.

Будем говорить, что все эквивалентные между собою множества имеют одинаковую мощность.

Для конечного множества мощность – это количество его элементов.

Для счетных множеств – это мощность множества натуральных чисел.

Мощность континуум – мощность ??? всех действительных чисел «непрерывный».





Дата добавления: 2014-01-03; Просмотров: 786; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.