Студопедия

КАТЕГОРИИ:



Мы поможем в написании ваших работ!

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мы поможем в написании ваших работ!

Окрестность точки, элементы топологии





Множество действительных чисел R и его основные подмножества

49.

Рассмотрим множество действительных чисел R=( и его основные подмножества:

а) N – множество натуральных чисел , N = { 1, 2, 3, …….}

б) Z - множество целых чисел, Z = {0; +1, +2, +3, ….}

в) Q – Множество рациональных чисел

Q = {m/n, где m, n є Z, дробь m/n – несократимая},

г) J = R \ Q – множество иррациональных чисел;

д) множество последовательностей { а1, а2, … аn, …, аn є R, n є N }.

Заметим, что N C Z C Q C R

е) Числовые промежутки:

интервал (a, b) = { x є R: a < x < b },

отрезок [ a, b ] = { x є R: a ≤ x ≤ b };

интервалы смешанного типа

[ a, b ) = (a, b) {a} и ( a, b ] = (a, b) {b};

Бесконечные промежутки

( - ∞, a) = { x є R: x < a } и ( - ∞, a] = { x є R: x ≤ a },

(a, +∞) = {x є R: x > a } и [a, +∞)) = {x є R: x ≥ a },

а также (-∞, +∞) = R.

 

Пусть 𝜺 – произвольное положительное число, 𝜺

Определение 1. 𝜺 – окрестностью точки x0 Є R называется интервал

(x0 –𝜺, x0 + 𝜺) или х: |x - x0| < 𝜺.

 

( . )

x0 – 𝜺 x0 x0 + 𝜺

Пусть X – произвольное множество, &= { Ui, i Є I } – некоторое семейство его подмножеств, где множество I имеет произвольную мощность.

Определение 2. Семейство & определяет во множестве Х топологию, если

1) X и Ø Є U;

2) объединение любого числа множеств из семейства & принадлежит

семейству &;

3) Пересечение конечного числа множеств из семейства & принадлежит &.

Примеры топологических пространств (X, U) :

Х = R, & – семейство окрестностей. Понятия точки прикосновения, предельной точки, сходимости последовательности точек, непрерывности функций могут быть описаны в терминах открытых множеств (в терминах окрестностей точек).

 





Дата добавления: 2014-01-03; Просмотров: 566; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.001 сек.